首页> 外文OA文献 >Étude de l'influence de la vitesse de déformation sur la réponse à l'indentation des matériaux polymères
【2h】

Étude de l'influence de la vitesse de déformation sur la réponse à l'indentation des matériaux polymères

机译:应变速率对高分子材料压痕响应影响的研究

摘要

The aim of this thesis is to study the strain rate effects through materials response from indentation test. Polymeric solid material, especially Polycarbonate (PC), Polymethyl methacrylate (PMMA), High Density Polyethylene (HDPE) and Polyamide Nylon 6.6 -30% glass fiber reinforced (PA 6.6-30% GFR), were selected as study materials due to their high strain rate sensitivity even at room temperature. The first two parts of this work were focused on the study of the thermomechanical behavior of polymer materials. Bibliographical studies of thermoplastic polymer materials, amorphous and semi-crystalline, was established in order to understand their microstructure and deformation mechanism. Moreover, compression tests were performed on study materials with several crosshead speeds values then the results was exploited analytically. The last three parts were focused on mechanical characterization using Instrumented Indentation Test (IIT). Firstly, numerical simulation of a conical indentation test ( =70.3°) with a constant rate displacement ( = 1 µm/s) was established using the identified G’sell behavior parameters and the power-law parameters from compression test. Parameter identification using Inverse Analysis from numerical material shows the non-uniqueness of G’sell parameters which gives the same indentation curve. Thus, theoretical study of conical indentation test was established considering power-law model. A new concept of the representative strain and the representative strain rate, based on solution domain which associate the set of parameters leading to the same indentation curves, was proposed. Very satisfactory results was obtained when identification process using this average representative strain rate is applied to a numerical material define by a power-law model. However, this method could not show its efficiency because the mechanical behavior of the real material is not correctly modeling with a power-law at a wide range of strain and strain rate. Finally, the new concept of the representative strain and the representative strain rate proposed on this work contributes to a new investigation tools to exploit the results form IIT and provide a very interesting perspectives.
机译:本文的目的是通过压痕测试通过材料响应来研究应变率效应。选择聚合物固体材料,特别是聚碳酸酯(PC),聚甲基丙烯酸甲酯(PMMA),高密度聚乙烯(HDPE)和聚酰胺尼龙6.6 -30%玻璃纤维增​​强(PA 6.6-30%GFR)作为研究材料,甚至在室温下的应变率灵敏度。这项工作的前两部分着重于聚合物材料的热机械行为的研究。建立热塑性聚合物材料(无定形和半结晶)的书目研究,以了解其微观结构和变形机理。此外,在研究材料上以几个十字头速度值进行了压缩测试,然后将结果用于分析。最后三部分着重于使用仪器压痕测试(IIT)进行机械表征。首先,使用已确定的G'sell行为参数和压缩测试的幂律参数,建立了具有恒定速率位移(= 1 µm / s)的锥形压痕测试(= 70.3°)的数值模拟。使用反演分析从数字资料中进行参数识别,可得出G'sell参数的非唯一性,从而得出相同的压痕曲线。因此,建立了考虑幂律模型的锥形压痕试验的理论研究。提出了一种基于溶液域的代表应变和代表应变速率的新概念,该域将导致同一压痕曲线的参数集关联起来。当使用此平均代表应变率的识别过程应用于幂律模型定义的数字材料时,获得了非常令人满意的结果。但是,该方法无法显示出其效率,因为在宽的应变和应变率范围内,真实材料的机械行为无法通过幂律正确建模。最后,这项工作中提出的代表应变和代表应变率的新概念为开发利用IIT结果并提供非常有趣的观点的新调查工具做出了贡献。

著录项

  • 作者

    Rabemananjara Liva;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 fr
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号