首页> 外文OA文献 >Models and Critical Maneuvers for Road Vehicles
【2h】

Models and Critical Maneuvers for Road Vehicles

机译:道路车辆的模型和关键演习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

As manufacturers are pushing their research and development toward more simulation based and computer aided methods, vehicle dynamics modeling and simulation become more important than ever. The challenge lies in how to utilize the new technology to its fullest, delivering the best possible performance given certain objectives and current restrictions. Here, optimization methods in different forms can be a tremendous asset. However, the solution to an optimization problem will always rely on the problem formulation, where model validity plays a crucial role. The main emphasis in this thesis lies within methodology and analysis of optimal control oriented topics for safety-critical road-vehicle maneuvers. A crucial element here is the vehicle models. This is investigated as a first study, evaluating the degree to which different model configurations can represent the lateral vehicle dynamics in critical maneuvers, where it is shown that even the low-complexity models describe the most essential vehicle characteristics surprisingly well. How to formulate the optimization problems and utilize optimal control tools is not obvious. Therefore, a methodology for road-vehicle maneuvering in safety-critical driving scenarios is presented, and used in evaluation studies of various vehicle model configurations and different road-surface conditions. It was found that the overall dynamics is described similarly for both the high- and low-complexity models, as well as for various road-surface conditions. If more information about the surroundings is available, the best control actions might differ from the ones in traditional safety systems. This is also studied, where the fundamental control strategies of classic electronic stability control is compared to the optimal strategy in a safety-critical scenario. It is concluded that the optimal braking strategy not only differs from the traditional strategies, but actually counteracts the fundamental intentions from which the traditional systems are based on. In contrast to passenger cars, heavy trucks experience other characteristics due to the different geometric proportions. Rollover is one example, which has to be considered in critical maneuvering. Model configurations predicting this phenomenon are investigated using optimal control methods. The results show that the simple first go-to models have to be constrained very conservatively to prevent rollover in more rapid maneuvers. In vehicle systems designed for path following, which has become a trending topic with the expanding area of automated driving, the requirements on vehicle modeling can be very high. These requirements ultimately depend on several various properties, where the path restrictions and path characteristics are very influential factors. The interplay between these path properties and the required model characteristics is here investigated. In situations where a smooth path is obtained, low-complexity models can suffice if path deviation tolerances are set accordingly. In more rapid and tricky maneuvers, however, vehicle properties such as yaw inertia are found to be important. Several of the included studies indicate that vehicle models of lower complexity can describe the overall dynamics sufficiently in critical driving scenarios, which is a valuable observation for future development.
机译:随着制造商将研究和开发推向更多基于仿真和计算机辅助的方法,车辆动力学建模和仿真比以往任何时候都变得越来越重要。挑战在于如何充分利用新技术,在特定目标和当前限制下,如何提供最佳性能。在这里,不同形式的优化方法可能是一笔巨大的财富。但是,对优化问题的解决方案始终取决于问题的表述,而模型的有效性起着至关重要的作用。本论文的主要重点在于针对安全关键型道路车辆操纵的面向最优控制的方法论和分析。这里的关键因素是车辆模型。这是一项首次研究,其目的是评估不同模型配置在临界操作中代表横向车辆动力学的程度,这表明即使是低复杂度的模型也能很好地描述最基本的车辆特性。如何制定优化问题并利用优化控制工具还不是很清楚。因此,提出了一种在关键安全驾驶场景下进行机动车辆操纵的方法,并将其用于各种车辆模型配置和不同路面状况的评估研究中。结果发现,对于高复杂度模型和低复杂度模型以及各种路面状况,总体动力学情况都是类似的。如果可以获得有关周围环境的更多信息,则最佳控制措施可能与传统安全系统中的控制措施有所不同。还将对此进行研究,将经典电子稳定性控制的基本控制策略与安全关键场景中的最佳策略进行比较。结论是,最佳制动策略不仅不同于传统制动策略,而且实际上抵消了传统制动系统所基于的基本意图。与乘用车相比,重型卡车由于几何比例不同而具有其他特征。翻转是一个示例,在关键操作中必须考虑这一点。使用最佳控制方法研究了预测此现象的模型配置。结果表明,必须非常保守地限制简单的首次进入模型,以防止在更快速的操作中发生侧翻。在设计用于路径跟踪的车辆系统中,随着自动驾驶领域的发展,该系统已成为一个趋势主题,对车辆建模的要求可能很高。这些要求最终取决于多种特性,其中路径限制和路径特性是非常有影响力的因素。这些路径属性和所需的模型特征之间的相互作用在这里进行了研究。在获得平滑路径的情况下,如果相应地设置路径偏差公差,则低复杂度模型就足够了。然而,在更快速和棘手的操纵中,发现诸如偏航惯性的车辆特性很重要。其中包括的几项研究表明,复杂性较低的车辆模型可以在关键驾驶场景中充分描述整体动力学,这对于未来的发展具有重要意义。

著录项

  • 作者

    Lundahl, Kristoffer;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号