首页> 外文OA文献 >Neural Network-based Fault Diagnosis of Satellites Formation Flight
【2h】

Neural Network-based Fault Diagnosis of Satellites Formation Flight

机译:基于神经网络的卫星编队飞行故障诊断

摘要

The main objective of this thesis is to develop a methodology for detecting and isolating faults (i.e. fault diagnosis) in any of multiple reaction wheels that are commonly employed as actuators in a consensus-based virtual structure controlled formation of satellites. In order to accomplish this objective, a two-level fault diagnosis system is developed based on Dynamic Neural Networks (DNNs). In the lower-level of the formation flight system hierarchy, a local fault diagnosis module is available in each individual satellite. In this level, the fault diagnosis system may consist of a dynamic neural network that is trained by using absolute measurements and states of eachudsingle satellite. Unfortunately, a local fault diagnosis system may fail to detect the presence of low severity faults. In an individual satellite these low severity faultsudmay not cause any serious complications with the specifications of the overall mission, however they can cause significant impact on the satellite’s attitude or rates in a given precision formation flight of a network of satellites. Consequently, in order to detect these low severity faults a fault detection system is required to be designed and developed at the higher-level or the formation-level of the mission hierarchy. Towards this end, the highly nonlinear dynamics of the formation flight and the reactionudwheels are modeled by using dynamic multilayer perceptron neural networks. The proposed formation-level DNNs invoke the extended back propagation learning algorithm and are trained based on sets of input/output data that are collected from the relative attitude determination sensors of the 3-axis attitude control subsystems of the satellites. The DNN parameters are adjusted to minimize certain performance indices (representing the output estimation errors).udThe capabilities of the proposed DNNs are investigated under various faulty situations, including single and multiple actuator fault scenarios and under high severity and low severity faulty situations. Using a Confusion Matrix evaluation method, it is demonstrated that by using the proposed fault detection and isolation (FDI) scheme, one can achieve a high level of accuracy and precision in detecting faults. The proposed formation-level FDI system has capabilities in efficiently detecting and isolatingudactuator low severity faults simultaneously.
机译:本论文的主要目的是开发一种用于检测和隔离通常被用作基于共识的虚拟结构控制卫星的致动器的多个反应轮中的任何一个的故障(即故障诊断)的方法。为了实现这一目标,开发了基于动态神经网络(DNN)的两级故障诊断系统。在编队飞行系统层次结构的较低级别中,每个单独的卫星中都可以使用本地故障诊断模块。在此级别上,故障诊断系统可能包含一个动态神经网络,该网络通过使用绝对测量和每个“单颗”卫星的状态进行训练。不幸的是,本地故障诊断系统可能无法检测到低严重性故障的存在。在单个卫星中,这些严重程度较低的故障可能不会对整个任务的规格造成任何严重的复杂性,但是,在给定的卫星网络的精确编队飞行中,它们可能会对卫星的姿态或速率产生重大影响。因此,为了检测这些低严重度的故障,需要在任务层次的较高级别或编队级别设计和开发故障检测系统。为此,使用动态多层感知器神经网络对编队飞行和反作用轮的高度非线性动力学进行建模。提出的编队级DNN调用扩展的反向传播学习算法,并基于从卫星3轴姿态控制子系统的相对姿态确定传感器收集的输入/输出数据集进行训练。调整DNN参数以最大程度地减少某些性能指标(代表输出估计误差)。 ud在各种故障情况下(包括单执行器故障情况和多执行器故障情况以及在高严重性和低严重性故障情况下),研究提议的DNN的功能。使用混淆矩阵评估方法表明,通过使用所提出的故障检测和隔离(FDI)方案,可以在检测故障方面实现较高的准确性和精度。所提出的编队级FDI系统具有同时检测和隔离低水平严重故障的能力。

著录项

  • 作者

    Mousavi Mirak Shima;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号