首页> 外文OA文献 >Benefits of Decomposition Methods to Speed-up EnergyudSystem Modelling and Application to Stochastic Optimization
【2h】

Benefits of Decomposition Methods to Speed-up EnergyudSystem Modelling and Application to Stochastic Optimization

机译:分解方法加速能量的好处 ud系统建模及其在随机优化中的应用

摘要

The transition of the energy system towards a sustainable supply with low carbon emissions requires the long term planning of power generation capacity expansion. Energy scenarios can give insight into the development of complex electricity systems in the coming decades. Each scenario includes a large number of external factors which influence the pathway of energy system development. However, due to the long term nature of the energy transition, these external parameters (e.g. fuel prices, technology development, weather influences etc.) contain large uncertainties. To a certain degree, cross-impact-balance analysis can evaluate the consistency and improve the holistic image of future energy scenarios, but a large degree of uncertainty remains. So far, this problem was usually tackled by deterministic optimization with subsequent sensitivity analysis. ududRecent development towards parallel computing allow for stochastic optimization over a large set of scenarios. When considering flexibility options like electrical energy storage, demand side management and electric mobility, high temporal resolutions of the modelled energy system are required. Consequently, the implementation of stochastic optimization into high resolution optimizing energy system models will lead to an increased complexity, due to the additional scenario dimension. This problem can be tackled using decomposition approaches like enhanced Benders decomposition in order to guarantee achieving the global optimum while taking computational restrictions into account. Challenges arise especially regarding CPU load balancing for the aspired migration to high performance computing. ududThe presentation will discuss preliminary results from an extension of the energy system model REMix, developed at the German Aerospace Center (8760 h per year, developed in GAMS and solved as a LP or MIP using CPLEX). By implementing different decomposition techniques and improving convergence, computational constraints can be overcome and the number of evaluated scenarios can be increased. Aim of this analysis is to increase the complexity of the stochastic models and improve the quality and robustness of the modelling results.
机译:能源系统向低碳排放的可持续供应过渡需要对发电能力进行长期规划。能源情景可以洞悉未来几十年的复杂电力系统。每种情况都包含大量影响能源系统发展途径的外部因素。但是,由于能源转换的长期性质,这些外部参数(例如燃料价格,技术发展,天气影响等)包含很大的不确定性。在某种程度上,交叉影响平衡分析可以评估一致性并改善未来能源情景的整体形象,但是仍然存在很大的不确定性。到目前为止,通常通过确定性优化以及随后的敏感性分析来解决此问题。 ud ud最近对并行计算的开发允许在大量场景中进行随机优化。在考虑诸如电能存储,需求侧管理和电力流动性的灵活性选项时,需要建模的能源系统的高时间分辨率。因此,由于附加的方案维度,将随机优化实施到高分辨率优化能源系统模型中将导致复杂性增加。可以使用诸如增强的Benders分解之类的分解方法来解决此问题,以便在考虑计算限制的同时确保实现全局最优。尤其是在有志向高性能计算迁移的CPU负载平衡方面,挑战尤其突出。 ud ud该演讲将讨论在德国航空航天中心开发的能源系统模型REMix的扩展(初步结果为每年8760小时,在GAMS中开发,并使用CPLEX解决为LP或MIP)的初步结果。通过实施不同的分解技术并提高收敛性,可以克服计算约束,并可以增加评估方案的数量。该分析的目的是增加随机模型的复杂度,并提高建模结果的质量和鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号