首页> 外文OA文献 >Ingebedde modelgebaseerde predictieve regeling en glijdende-horizon-schatting voor mechatronische toepassingen
【2h】

Ingebedde modelgebaseerde predictieve regeling en glijdende-horizon-schatting voor mechatronische toepassingen

机译:机电应用中基于嵌入式模型的预测控制和滑动层估计

摘要

The concepts of Model Predictive Control (MPC)¨ and Moving Horizon Estimation (MHE) received wides pread acceptance in both industry and academia. Th is is due to the ability to explicitly define obje ctives and constraints in the framework of dynamic ¨optimization. Those key facts eventually lead to¨ improved control performance. Progress in the area ¨of optimization algorithms and computational hard ware in the last two decades have extended the app licability of numerical optimization to mechatroni cs applications. In particular, the applicability¨ was extended for small-scale systems with time con stants in micro- and millisecond range. Following¨ the success convex quadratic programming (QP) solv ers made in linear MPC, the ideas have been extend ed for nonlinear MPC and MHE.This thesis ai ms to further reduce the gap between academia and¨ industry. With optimized software for nonlinear MP C and MHE and extended problem formulations we can ¨efficiently handle complex nonlinear systems, pos sibly working under nonlinear constraints. We pres ent recent extensions to the ACADO Code Generation ¨Tool (CGT). Once specified, the problem structure ¨is exploited offline by the tool that generates t he tailored code optimized for execution in real-t ime environments. We demonstrate the strength of t he newly developed features of the tool in numeric al simulations and two real-world applications. Our numerical simulations show readiness ¨to effectively treat problems on both short and l ong horizons. For the systems with a few states an d few controls solution times in the microsecond r ange are observed. Our largest test case involves¨ an MPC formulation comprising 33 states, 3 control s, and a prediction horizon of 50 steps. This ¨test case comprises 1800 optimization variables a nd is possible to solve on modern hardware in unde r 50 milliseconds. For another test problem where¨ long prediction horizons are the necessity, we obs erve solution times less than 4 milliseconds in a¨ test case with the horizon of 150 steps. The first experimental study is the application ¨of nonlinear MPC and MHE to a laboratory scale overhead crane. Here we present computational perfor mance of two generations of the ACADO CGT. Using t he original implementation of the tool and only an ¨MPC controller in the first control scenario, we¨ achieved execution times close to 1 millisecond. W ith the recently optimized code, we attained nearl y the same execution times, now with both nonlinea r MHE and the MPC in the loop. In addition, with t he more optimized code we reached average runtimes ¨for the nonlinear MPC three times faster than wit h the original implementation.The aim of th e second real-world application is to validate the ¨computational performance of the auto-generated M HE and MPC solvers on an experimental setup for ro tational start-up of an airborne wind energy syste m. The system model describes complex nonlinear dy namics comprising 27 differential states, 1 algebr aic state and 4 controls. The results confirm that ¨nonlinear MPC formulation with more than 1500 opt imization variables is solved in just less than 5¨ milliseconds reducing the total feedback time to b elow 10 milliseconds.
机译:模型预测控制(MPC)和移动视域估计(MHE)的概念在业界和学术界都得到了广泛的预见性认可。这是由于能够在动态“优化”框架中明确定义目标和约束。这些关键事实最终导致改进的控制性能。最近二十年来,在优化算法和计算硬件领域的进步已经将数值优化的适用性扩展到了机电应用中。特别是,其适用性扩展到了时间常数在微秒和毫秒范围内的小型系统。继线性MPC上成功的凸二次规划(QP)解决方案之后,非线性MPC和MHE的思想也得到了扩展。本文旨在进一步缩小学术界与工业界的距离。借助针对非线性MP C和MHE的优化软件以及扩展的问题公式,我们可以“有效地处理复杂的非线性系统,并且可能在非线性约束下工作。我们提供了ACADO代码生成工具(CGT)的最新扩展。一旦指定了问题结构,该工具便会离线使用该工具,该工具会生成针对实时环境执行而优化的量身定制的代码。我们在数值模拟和两个实际应用中展示了该工具的新开发功能的优势。我们的数值模拟表明,随时可以有效地解决短期和长期的问题。对于状态很少的系统,在微秒范围内观察到了几个控制解的时间。我们最大的测试用例涉及一个包含33个状态,3个控件和50个步骤的预测范围的MPC公式。该测试用例包含1800个优化变量,并且可以在不到50毫秒的时间内在现代硬件上解决。对于另一个需要较长的预测范围的测试问题,在150个步骤的测试案例中,我们认为解决方案的时间少于4毫秒。第一个实验研究是将非线性MPC和MHE应用于实验室规模的桥式起重机。在这里,我们介绍了两代ACADO CGT的计算性能。使用该工具的原始实现方式,并且在第一个控制方案中仅使用“ MPC控制器”,我们实现了接近1毫秒的执行时间。使用最近优化的代码,我们几乎可以实现相同的执行时间,现在非线性MHE和MPC都在循环中。此外,通过更优化的代码,我们达到了平均运行时间-非线性MPC的运行时间比原始实现快了三倍。第二个实际应用的目的是验证自动生成的计算性能M HE和MPC求解器在用于机载风能系统旋转启动的实验装置上。系统模型描述了复杂的非线性动力学,包括27个微分状态,1个代数状态和4个控制。结果证实,“具有超过1500个最佳化变量的非线性MPC公式在不到5毫秒的时间内即可解决,从而将总反馈时间缩短至10毫秒以下”。

著录项

  • 作者

    Vukov Milan;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号