首页> 外文OA文献 >Hedendaagse en toekomstige invloed van de Afrikaanse Grote Meren op het regionaal klimaat
【2h】

Hedendaagse en toekomstige invloed van de Afrikaanse Grote Meren op het regionaal klimaat

机译:非洲五大湖对地区气候的当代和未来影响

摘要

In this PhD project, use will be made of the regional climate model CCLM, in which only very recently, the freshwater lake parameterisation scheme FLake has been implemented. The research will be build around three main axes: (i) improvement of the treatment of turbulent exchanges and lake dynamics in FLake, (ii) climate simulations –and evaluation– for Central and Eastern Africa using CCLM driven by Global Climate Model (GCM) output, and (iii) assessing the uncertainty range of these simulations by developing and implementing a new method, the so-called physically-based statistical downscaling. The second axis again falls into two parts, as runs will be performed to reconstruct both present (2001-2012) and future (2071-2100) climatic conditions.1. Improving CCLM’s FLake moduleThe interaction of the atmosphere with an underlying lake surface strongly depends upon the lake’s surface temperature and its time-rate-of-change. Moreover, lakes strongly modify the structure and transportproperties of the atmospheric surface layer and therefore the surface fluxes of heat, moisture and momentum. The two layer freshwater lake model FLake attempts to address both issues by solving a set of differentialequations while using a parameterised vertical temperature structure. However, although the model performs well for small and shallow lakes, ithas difficulties reproducing both the near-surface air temperature and the thermal structure of large lakes. Three major model deficiencies canbe identified in the current version: the representation of turbulent fluxes, the parameterisation of temperature profiles and the spin-up time, each of which will be investigated within the research proposed.First, the parameterisation of surface water roughness lengths with respect to wind and scalar quantities such as potential temperature and specific humidity will be investigated. For example, the effect of a limited wind fetch over inland water surfaces compared to sea surfaces on the momentum transfer equation needs to be assessed as it is still lacking in the present model version and biases the parameterisation of turbulent flux exchanges. Second, the temperature profile parameterisation will be improved and extended as to include the abyssal layer. This issue is especially important in the context of the African rift lakes, given that primary production highly depends on it, and hence a good representation of the lake’s thermal structure is of primary importance for predicting future ecosystem productivity. One possible way of improvement would be to allow for horizontal heat and water transfers to influence the water’sthermal structure. For the evaluation of FLake’s ability to represent lake Kivu’s thermal structure, use will be made of lake temperature profiles collected during multiple past and near-future field campaigns in the Kivu region organised by the EAGLES consortium. Finally, the technicalissue of the lake temperature spin-up following a cold start of FLake will be addressed. Since lakes have a long memory, erroneous initial conditions lead to wrong lake surface temperatures until the memory is faded. A way out of this problem could be to determine a climatological mean state of the lake and to use this as initial conditions for the Flake module. These mean conditions can be derived from an offline Flake integration.2.1. Simulating present conditionsA present-day simulation will be performed with CCLM for the period 2001-2012, using the lateral boundaries from the European Centre for Medium-range Weather Forecasting (ECMWF) re-analyses. The domain will enclose the larger Central andEastern Africa, using 150 x 150 x 32 grid points with a resolution of ~0.0625° (7 kilometres). This spatial resolution is sufficient to take into account the effect of Lake Kivu on the local climate, as is shown ina modelling study over Lake Chad in West Africa. Before futureclimate predictions can be performed, it is important to evaluate the model performance for the present-day climate. The ability of CCLM to reproduce the present-day central and eastern African climate will be evaluated using in situ measurements available for the period 2002-2010 from local meteorological stations around the lake and gathered in the EAGLESproject’s Kivu database. Satellite data from the Tropical Rainfall Measurement Mission (TRMM) are available since 2000 on a 0.25° resolution and will be used to spatially evaluate 3 hourly or monthly accumulated precipitation. Cloud cover will be evaluated using satellite observations from the Moderate-resolution Imaging Spectroradiometer on board the Terrasatellite (MODIS-Terra) or the Meteosat Second Generation (MSG) program, available every 15 minutes at a 1km spatial resolution, and atmospheric soundings available from the University of Wyoming. 2.2. Understanding and attributing climate change around Lake KivuThe climate change signal around Lake Kivu will be simulated using the CCLM model for the period 2071-2100. The Hamburg GCM (ECHAM5) will deliver initial and lateral boundary conditions. These fields are available from international intercomparison exercises contributing to the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment report, more specifically the Coordinated Regional Climate Downscaling Experiment (CORDEX). Their aim is to provide higher-resolution climate information than is available directly from contemporary global climate models (~ a few hundred kilometres). For Africa, the standard spatial resolution of the experiments of CORDEX is 0.44° (50 kilometres). Again, the simulation will be doneon a resolution of 0.0625° for the same domain as the present-day climate simulations. Based on these simulations, changes in atmospheric circulation and their effect on local climate around the African rift lakes will be investigated. For example, the potential effect ofchanges in large-scale climate oscillations (e.g. El Niño-Southern Oscillation) on the lake physics will be examined, by analogy with what has been reported in Lake Tanganyika.3. Assessing the uncertainty range by means ofphysically-based downscalingIt is important to emphasize that one RCM simulation for the future provides no information on the range of uncertainty. In order to deal with this critical issue, one can perform multiple dynamical downscaling experiments, i.e. conduct several integrations with the RCM, each time initiated and fed at the boundaries by output from a different GCM. However, although much is to say infavour of this approach, the multi-model ensemble method is computationally very expensive. Given the presence of abundant in-situ observations, one could also opt for statistical downscaling, wherein one searches for linear relationships between e.g. observed surface temperature and precipitation and a range of atmospheric predictor variables. However thisapproach is tenuous as good observational data are very sparse in the present Central African context. In the PhD project, it is proposed to develop a physically-based statistical downscaling method that uses linear relationships between output both from global and high-resolution regional climate model integrations. Hence, transfer functions will be derived that calculate the temperature and precipitation distributionas a function of, on the one hand, geophysical features (orography, vegetation type, soil characteristics, background albedo, etc.) and, on theother hand, large-scale meteorological conditions like circulation patterns, temperature, humidity, convective available potential energy and other variables derived from ECMWF re-analyses data. Also, the implementation of more advanced statistical techniques is envisaged, such as principal component analysis and maximum covariance analysis, as they allow to find patterns within and between large datasets, and the Mann-Kendall non-parametric trend test, as it is able to detect non-linear relationships. The ability of the physically-based statistical downscaling model to reproduce present climate will be evaluated in similar ways as explained in §2.1. This off-line model will subsequently be driven by the large-scale atmospheric conditions from different GCM climate scenarios available from CORDEX to obtain different possible realisations of future near-surface climate. Hence, variation in the sensitivity of African climate under different scenario’s of future changes in large-scale atmospheric circulation will be taken into account. Moreover, this off-line model will even allow to assess the uncertainty related to the magnitude of the expected global warming –i.e. the choice of the radiative forcing pathway– as it will also be run for different ‘Representative Concentration Pathways’ (RCPs).
机译:在这个博士项目中,将使用区域气候模型CCLM,直到最近才实施了淡水湖参数化方案FLake。该研究将围绕三个主轴展开:(i)改进FLake中湍流交换和湖泊动力学的处理,(ii)使用由全球气候模式(GCM)驱动的CCLM对中部和东部非洲进行气候模拟和评估输出;(iii)通过开发和实施一种新的方法,即所谓的基于物理的统计缩减,来评估这些模拟的不确定性范围。第二条轴又分为两部分,将进行运行以重建当前(2001-2012)和未来(2071-2100)的气候条件。1。改进CCLM的FLake模块大气层与下层湖泊表面的相互作用在很大程度上取决于湖泊的表面温度及其时间变化率。此外,湖泊强烈地改变了大气表层的结构和传输特性,从而改变了热量,水分和动量的表面通量。两层淡水湖模型FLake尝试通过使用参数化垂直温度结构求解一组微分方程来解决这两个问题。但是,尽管该模型在小型和浅水湖泊中表现良好,但在再现近地表气温和大型湖泊的热结构方面都存在困难。当前版本中可以识别出三个主要的模型缺陷:湍流通量的表示,温度曲线的参数化和旋转时间,这将在研究中进行研究。首先,地表水粗糙度长度的参数化与关于风和标量的量,例如潜在温度和比湿度,将进行调查。例如,由于在当前模型版本中仍然缺乏内陆水面与海面相比海面有限的取风对动量传递方程的影响,因此需要对其进行评估,并且会影响湍流交换的参数化。第二,温度分布参数化将得到改进和扩展,以包括深海层。由于主要的生产高度依赖于非洲裂谷湖泊,因此这个问题在非洲裂谷湖泊中尤为重要,因此,良好地表示湖泊的热结构对于预测未来的生态系统生产力至关重要。一种可能的改进方法是允许水平的热量和水的传递影响水的热结构。为了评估FLake代表基伍湖的热结构的能力,将利用EAGLES财团在基伍地区组织的多次过去和不久的未来野战中收集的湖泊温度曲线。最后,将解决FLake冷启动后湖温上升的技术问题。由于湖泊的记忆时间长,因此错误的初始条件会导致错误的湖泊表面温度,直到记忆消失为止。解决该问题的方法可能是确定湖泊的气候平均状态,并将其用作薄片状模块的初始条件。这些平均条件可以从离线Flake集成中得出。2.1。模拟当前状况使用欧洲中距离天气预报中心(ECMWF)的重新分析,将使用CCLM对2001-2012年进行当前模拟。该域将使用150 x 150 x 32网格点将较大的中非和东非包围起来,分辨率约为0.0625°(7公里)。该空间分辨率足以考虑到基伍湖对当地气候的影响,如西非乍得湖上的模拟研究所示。在可以进行未来气候预测之前,评估当前气候的模型性能非常重要。将使用2002-2010年从湖周围的地方气象站获得的原地测量数据,来评估CCLM复制当前中部和东部非洲气候的能力,并将其收集在EAGLESproject的Kivu数据库中。自2000年以来,可从热带降雨测量团(TRMM)获得的卫星数据的分辨率为0.25°,并将用于空间评估3个小时或每月的累积降水量。将使用Terrasatellite(MODIS-Terra)或Meteosat Second Generation(MSG)计划上的中等分辨率成像光谱仪对卫星的观测进行评估,每15分钟以1km的空间分辨率提供和怀俄明大学的大气探测。 2.2。了解和归因于基伍湖周围的气候变化将使用CCLM模型模拟2071-2100年期间的基伍湖周围的气候变化信号。汉堡GCM(ECHAM5)将提供初始和横向边界条件。这些领域可从为政府间气候变化专门委员会(IPCC)第五次评估报告做出贡献的国际比对活动中找到,更具体地说是协调的区域气候缩减试验(CORDEX)。他们的目的是提供比当代全球气候模型(约几百公里)直接提供的更高分辨率的气候信息。对于非洲,CORDEX实验的标准空间分辨率为0.44°(50公里)。同样,对于与当前气候模拟相同的域,将以0.0625°的分辨率进行模拟。基于这些模拟,将研究大气环流变化及其对非洲裂谷湖周围局部气候的影响。例如,将通过类似于坦Tang尼喀湖的报道,研究大规模气候振荡变化(例如厄尔尼诺-南方涛动)对湖泊物理学的潜在影响。通过基于物理的缩减来评估不确定性范围重要的是要强调的是,未来的一种RCM模拟无法提供有关不确定性范围的信息。为了解决这一关键问题,可以执行多个动态降级实验,即与RCM进行多次集成,每次由不同GCM的输出启动并馈入边界。但是,尽管可以说很多赞成这种方法,但是多模型集成方法在计算上非常昂贵。鉴于存在大量的原位观测资料,人们还可以选择进行统计缩减,其中一个例子是搜索例如观测到的地表温度和降水以及一系列大气预测变量。但是,这种方法是微不足道的,因为在目前的中非背景下,良好的观测数据非常稀少。在博士项目中,提议开发一种基于物理的统计缩减方法,该方法使用全球和高分辨率区域气候模型集成的输出之间的线性关系。因此,将导出传递函数,该传递函数一方面根据地球物理特征(地形,植被类型,土壤特征,背景反照率等),另一方面根据大规模气象学来计算温度和降水分布。诸如循环模式,温度,湿度,对流可用势能以及ECMWF得出的其他变量之类的条件会重新分析数据。此外,可以设想采用更高级的统计技术,例如主成分分析和最大协方差分析,因为它们可以找到大型数据集内和之间的模式,并且可以进行Mann-Kendall非参数趋势测试,因为它可以检测非线性关系。基于物理的统计降尺度模型重现当前气候的能力将按照第2.1节中所述的类似方式进行评估。随后,此脱机模型将受到来自CORDEX提供的不同GCM气候情景的大规模大气条件的驱动,以获得未来近地表气候的不同可能实现。因此,将考虑到在未来大规模大气环流变化的不同情景下非洲气候敏感性的变化。此外,这种离线模型甚至可以评估与预期全球变暖幅度相关的不确定性,即辐射强迫路径的选择,因为它也会针对不同的“代表性集中路径”(RCP)运行。

著录项

  • 作者

    Thiery Wim;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号