首页> 外文OA文献 >CFD analysis of the fluid flow behavior in a reverse electrodialysis stack
【2h】

CFD analysis of the fluid flow behavior in a reverse electrodialysis stack

机译:逆电渗析堆中流体流动行为的CFD分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Salinity Gradient Power by Reverse Electrodialysis (SGP-RE) technology allows the production of electricity from the different chemical potentials of two differently concentrated salty solutions flowing in alternate channels suitably separated by selective ion exchange membranes. In SGP-RE, as well as in conventional ElectroDialysis (ED) technology, the process performance dramatically depends on the stack geometry and the internal fluid dynamics conditions: optimizing the system geometry in order to guarantee lower pressure drops (DP) and uniform flow rates distribution within the channels is a topic of primary importance. Although literature studies on Computational Fluid Dynamics (CFD) analysis and optimization of spacer-filled channels have been recently increasing in number and range of applications, only a few efforts have been focused on the analysis of the overalludperformance of the process. In particular, the proper attention should be devoted to verify whether the spacer geometry optimization really represents the main factor affecting the overall process performance. In the present work, realized within the EU-FP7 funded REAPower project, CFD simulations were carried out in order to assess the effects of different parameters on the global process efficiency, such as the choice of spacer material and morphology, and the optimization of feed and blowdown distribution systems. Spacer material and morphology can affect the fluid dynamics inside each channel. In particular,udthe appropriate choice of net spacer material can influence the slip/no-slip condition of the flow on the spacer wires, thus significantly affecting the channel fluid dynamics in terms of pressure drops. A Unit Cell approach was adopted to investigate the effect of the different choices on the fluid flow along the channel. Also, the possibility of choosing a porous medium to substitute the net spacer was theoretically addressed. Such investigation focused on the porosity and the fiber radius required to respect the process constrains of pressure drops and mechanical stability. On the other hand, the overall pressure drops of a SGP-RE or ED stack can be considered as resulting from different contributions: the pressure drop relevant to the feed distributor, the pressure drop inside the channel, and the pressure drop in the discharging collector. The choice of the optimal stack geometry is, therefore, strongly related to the need of both minimizing each of the above terms and obtaining the most uniform feed streams distribution among the stack channels. In order to investigate such aspects, simulations were performed on a simplified ideal planar stack with either 50 spacer-less or 50 spacer-filled channels. The effect of the distribution/collector channel thickness and geometry on single-channel flow rates and overall pressure drops in the system was analyzed and a significant influence of distributor layout and size on the overall process performance was found.
机译:通过逆电渗析(SGP-RE)技术实现的盐度梯度发电技术,是通过两种不同浓度的咸溶液的不同化学势产生的电,这些咸溶液在通过选择性离子交换膜适当分隔的交替通道中流动。在SGP-RE和传统的电渗析(ED)技术中,过程性能极大地取决于烟囱的几何形状和内部流体动力学条件:优化系统几何形状以确保较低的压降(DP)和均匀的流速渠道内的分配是最重要的主题。尽管有关计算流体力学(CFD)分析和优化填充垫片的通道的文献研究最近在应用领域和数量上有所增加,但只有很少的努力集中在分析过程的整体性能方面。特别是,应该专门注意验证垫片的几何形状优化是否确实代表了影响整体工艺性能的主要因素。在目前的工作中,在由EU-FP7资助的REAPower项目中实现,进行了CFD模拟,以评估不同参数对整体工艺效率的影响,例如垫片材料和形态的选择以及进料的优化和排污分配系统。垫片的材料和形态会影响每个通道内的流体动力学。特别地,适当地选择净间隔材料可以影响间隔线上的流动的滑动/不滑动状态,从而就压降而言显着影响通道流体动力学。采用单元池方法来研究不同选择对沿通道的流体流动的影响。而且,理论上解决了选择多孔介质代替网状间隔物的可能性。这种研究集中在考虑压降和机械稳定性的工艺约束所需的孔隙率和纤维半径。另一方面,可以将SGP-RE或ED烟囱的总压降归因于不同的贡献:与进料分配器相关的压降,通道内部的压降以及排料收集器中的压降。因此,最佳烟囱几何形状的选择与最小化以上各项以及在烟囱通道之间获得最均匀的进料流分布的需求密切相关。为了研究这些方面,对具有50个无间隔物或50个填充间隔物的通道的简化的理想平面堆叠进行了仿真。分析了分配器/收集器通道的厚度和几何形状对系统中单通道流速和总压降的影响,并发现了分配器布局和尺寸对整体工艺性能的重大影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号