首页> 外文OA文献 >Mechanics of nanoscale beams in liquid electrolytes: beam deflections, pull-in instability, and stiction
【2h】

Mechanics of nanoscale beams in liquid electrolytes: beam deflections, pull-in instability, and stiction

机译:液体电解质中纳米级束的力学:束挠度,引入不稳定性和静摩擦

摘要

The pressure between two parallel planar surfaces at equal electric potentials is derivedusing the modified Poisson-Boltzmann (MPB) equation to account for finite ion size.The effects of finite ion size are presented for a z:z symmetric electrolyte and comparedwith the pressure derived by the classical Poisson-Boltzmann (PB) equation. Thepressures predicted by the two models differ more as the bulk ion concentration, surfacepotential, and ion size increase. The ratio of the pressures predicted by the two models ispresented by varying the ion concentration, surface potential, ion size and distance ofseparation. The ratio of pressures is relatively independent of the distance of separationbetween the two surfaces.An elastic beam suspended horizontally over a substrate in liquid electrolyte issubjected to electric, osmotic, and van der Waals forces. The continuous beam structure,not a discrete spring, which is governed by four nondimensional parameters, is solvedusing the finite element method. The effects of ion concentration and electric potentialsto the pull-in instability are especially focused by parametric studies with a carbon nanotube cantilever beam. The pull-in voltage of a double-wall carbon nanotubesuspended over a graphite substrate in liquid can be less than or greater than the pull-involtage in air, depending on the bulk ion concentration. The critical separation betweenthe double-walled carbon nanotube (DWCNT) and the substrate increases with the bulkion concentration. However, for a given bulk ion concentration, the critical separation isindependent of the electric potentials. Furthermore, the critical separation isapproximately equal in liquid and air.Stiction, the most common failure mode of the cantilever-based devices, isstudied in a liquid environment, including elastic energy, electrochemical work done,van der Waals work done and surface adhesion energy. We extend the classical energymethod of the beam peeling for micro-electro-mechanical systems (MEMS) in the air toan energy method for nano-electro-mechanical systems (NEMS) in liquid electrolyte.We demonstrate a useful numerical processing method to find the parameters to free thestiction of the beams and to obtain the detachment length of the beams.
机译:利用修正的Poisson-Boltzmann(MPB)方程推导了两个平行平面在相等电位下的压力,以说明有限的离子尺寸。给出了z:z对称电解质的有限离子尺寸的影响,并将其与由经典的Poisson-Boltzmann(PB)方程。两种模型预测的压力随着体积离子浓度,表面电势和离子尺寸的增加而相差更大。通过改变离子浓度,表面电势,离子大小和分离距离来表示两个模型预测的压力比。压力比相对独立于两个表面之间的分离距离。在液体电解质中水平悬浮在基板上的弹性梁受到电动,渗透和范德华力的作用。使用有限元方法求解了连续梁结构,而不是由四个无量纲参数控制的离散弹簧。离子浓度和电势对引入不稳定性的影响尤其是通过碳纳米管悬臂梁的参数研究得到了重点。取决于液体中的离子浓度,悬浮在液体中的石墨基板上的双壁碳纳米管的引入电压可以小于或大于空气中的引入电压。双壁碳纳米管(DWCNT)与基材之间的临界间距随体积浓度而增加。但是,对于给定的体离子浓度,临界分离与电势无关。此外,临界分离在液体和空气中大约相等。粘滞是悬臂式设备最常见的失效模式,是在液体环境中研究的,包括弹性能,完成的电化学功,范德华力和表面粘附能。我们将空气中微电子机械系统(MEMS)的剥皮的经典能量方法扩展为液体电解质中纳米电子机械系统(NEMS)的能量方法。我们演示了一种有用的数值处理方法来找到参数释放梁的静力并获得梁的分离长度。

著录项

  • 作者

    Lee Jae Sang;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号