首页> 外文OA文献 >Accurate Measurements and Modeling of the PpT Behavior of Pure Substances and Natural Gas-Like Hydrocarbon Mixtures
【2h】

Accurate Measurements and Modeling of the PpT Behavior of Pure Substances and Natural Gas-Like Hydrocarbon Mixtures

机译:精确测量和模拟纯物质和类似天然气的烃混合物的PtT行为

摘要

The scale of the energy business today and a favorable and promising economic environment for the production of natural gas, requires study of the thermophysical behavior of fluids: sophisticated experimentation yielding accurate, new volumetric data, and development and improvement of thermodynamic models. This work contains theoretical and experimental contributions in the form of 1) the revision and update of a field model to calculate compressibility factors starting from the gross heating value and the mole fractions of diluents in natural gas mixtures; 2) new reference quality volumetric data, gathered with state of the art techniques such as magnetic suspension densimetry and isochoric phase boundary determinations; 3) a rigorous first-principles uncertainty assessment for density measurements; and 4) a departure technique for the extension of these experimental data for calculating energy functions. These steps provide a complete experimental thermodynamic characterization of fluid samples. A modification of the SGERG model, a standard virial-type model for prediction of compressibility factors of natural gas mixtures, matches predictions from the master GERG-2008 equation of state, using least squares routines coded at NIST. The modification contains new values for parametric constants, such as molecular weights and the universal gas constant, as well as a new set of coefficients. A state-of-the-art high-pressure, single-sinker magnetic suspension densimeter is used to perform density measurements over a wide range of temperatures and pressures. This work contains data on nitrogen, carbon dioxide, and a typical residual gas mixture (95% methane, 4% ethane, and 1% propane). Experimental uncertainty results from a rigorous, first-principles estimation including composition uncertainty effects. Both low- and high-pressure isochoric apparatus are used to perform phase boundary measurements. Isochoric P-T data can determine the phase boundaries. Combined with density measurements, isochoric data provides isochoric densities. Further mathematical treatment, including noxious volume and thermal expansion corrections, and isothermal integration, leads to energy functions and thus to a full thermodynamic characterization.
机译:当今能源业务的规模以及天然气生产的有利和有希望的经济环境,需要研究流体的热物理行为:复杂的实验需要准确,新的体积数据,还要开发和改进热力学模型。这项工作包含以下形式的理论和实验贡献:1)修改和更新现场模型,以从总热值和天然气混合物中稀释剂的摩尔分数开始计算可压缩性因子; 2)用诸如磁悬浮密度法和等容相界确定等最新技术收集的新参考质量体积数据; 3)对密度测量进行严格的第一性原理不确定性评估;和4)用于扩展这些实验数据以计算能量函数的偏离技术。这些步骤提供了流体样品的完整实验热力学特性。对SGERG模型的修改(一种用于预测天然气混合物可压缩性因子的标准病毒式模型),使用在NIST编码的最小二乘例程,匹配了来自GERG-2008主状态方程的预测。该修改包含参数常数的新值,例如分子量和通用气体常数,以及一组新的系数。最先进的高压单负磁悬浮密度计用于在宽范围的温度和压力范围内执行密度测量。这项工作包含有关氮气,二氧化碳和典型残留气体混合物(95%甲烷,4%乙烷和1%丙烷)的数据。实验不确定性来自严格的第一性原理估算,包括成分不确定性影响。低压和高压等速设备均用于执行相界测量。等时的P-T数据可以确定相位边界。与密度测量相结合,等容数据可提供等容密度。进一步的数学处理(包括有毒的体积和热膨胀校正以及等温积分)会导致能量函数,从而产生完整的热力学特征。

著录项

  • 作者

    Mantilla Ivan;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号