首页> 外文OA文献 >Orthogonal Decomposition Methods for Turbulent Heat Transfer Analysis with Application to Gas Turbines
【2h】

Orthogonal Decomposition Methods for Turbulent Heat Transfer Analysis with Application to Gas Turbines

机译:正交分解法在湍流传热分析中的应用

摘要

Gas turbine engines are the main propulsion source for world wide aviation and are also used for power generation. Even though they rely mainly on fossil fuel and emit climate active gasses, their importance is not likely to decrease in the future. But more efficient ways of using finite resources and hence reducing emissions have to be found. Thus, the interest to improve engine efficiency is growing. Considering the efficiency of the underlying thermodynamic cycle, an increase can be achieved by raising the turbine inlet temperature or compression ratio. Due to the complex nature of the underlying flow physics, however, the aero-thermal processes are still not fully understood. For this reason, one needs to perform research at high spatial andtemporal resolution, in turn creating the need for effective means of postprocessing the large amounts of data.This dissertation addresses both sides of the problem - using high-scale, high resolution simulations as well as effective post processing techniques. As an example for the latter, a temporal highly resolved data set from wall pressure measurements of a transonic compressor stage is analyzed using proper orthogonal decomposition. The underlying experiments were performed by collaborators at Technical University Darmstadt. To decompose signals into optimal orthogonal basis functions based on temporal correlations including temperature, a formal mathematical framework is developed. A method to rank the reduced order representations with respect to heat transfer effectiveness is presented. To test both methods, a Reynolds-averaged Navier-Stokes (RANS) simulation and large eddy simulation (LES) are performed on turbulent heat transfer in a square duct with one single row of pin fins. While the LES results show closer agreement to experiments, both simulations unveil flow parts that do not contribute to heat transfer augmentation and can be considered wasteful. From the most effective mode, a wall contour for the same domain is derived and applied. In the wall contoured domain, energy in wasteful modes decreased, heat transfer increased and the temperature fluctuations at the wall decreased.Another stagnating boundary layer flow is examined in a direct numerical simulation of a first stage stator vane. Elevated levels of free stream turbulence and integral length scale are generated to simulate the features of combustor exit flow. The horseshoe vortex dynamics cause an increase in endwall heat transfer upstream of the vane. The link between energy optimal orthogonal basis functions and flow structures is examined using this data and the reduced order heat transfer analysis shows high energy modes with comparatively low impact on turbulent heat transfer. The analysis further shows that there are multiple horseshoe vortices that oscillate upstream of the blade, vanish, regenerate and can also merge. There is a punctual correlation of intense vortex dynamics and peaks in the orthogonal temperature basis function.For all data considered, the link between the energy optimal orthogonal basis functions and flow structures is neither guaranteed to exist nor straightforward toestablish. The orthogonal expansion locks onto flow parts with high fluctuating kinetic energy - which might or might not be the ones that are looked for. The heattransfer ranking eliminates this problem and is valid independently of how certain basis functions are interpreted.
机译:燃气涡轮发动机是全球航空的主要动力来源,也用于发电。尽管它们主要依靠化石燃料并排放出气候活性气体,但其重要性将来可能不会降低。但是必须找到更有效的方式来使用有限的资源,从而减少排放。因此,提高发动机效率的兴趣在增长。考虑到基本热力循环的效率,可以通过提高涡轮机入口温度或压缩比来实现提高。然而,由于基础流动物理学的复杂性,对空气热过程的理解仍然不充分。因此,人们需要在高时空分辨率下进行研究,从而产生了对有效处理大量数据的有效手段的需求。本论文同时解决了这个问题的两个方面,即使用大规模,高分辨率模拟作为有效的后处理技术。作为后者的示例,使用适当的正交分解分析了跨音速压缩机级的壁压测量值得到的时间高度分辨的数据集。基础实验由达姆施塔特工业大学的合作者进行。为了基于包括温度在内的时间相关性将信号分解为最优的正交基函数,开发了一个正式的数学框架。提出了一种相对于传热效率对降阶表示形式进行排序的方法。为了测试这两种方法,对具有单排销状翅片的方管中的湍流传热进行了雷诺平均Navier-Stokes(RANS)模拟和大涡模拟(LES)。尽管LES结果显示出与实验更加接近,但两个模拟都揭示了流动部分,这些部分不会增加传热,因此被认为是浪费的。从最有效的模式中,得出并应用相同区域的墙轮廓。在壁轮廓区域中,浪费模式下的能量减少,热传递增加,壁上的温度波动减小。在第一级定子叶片的直接数值模拟中,研究了另一种停滞边界层流。生成了高水平的自由流湍流和积分长度刻度,以模拟燃烧室出口流的特征。马蹄涡流动力学导致叶片上游端壁传热的增加。使用此数据检查了能量最佳正交基函数和流动结构之间的联系,降阶传热分析显示,高能模对湍流传热的影响相对较小。分析还表明,有多个马蹄形涡流在叶片上游振荡,消失,再生并可以合并。正交温度基础函数中存在强烈的涡旋动力学和峰值之间的时间相关性。对于所考虑的所有数据,既不能保证能量最优的正交基础函数与流动结构之间的联系也不容易建立。正交膨胀锁定具有高波动动能的流动部分-可能是也可能不是寻找的动能。传热排序消除了这个问题,并且与解释某些基本函数的方式无关地有效。

著录项

  • 作者

    Schwaenen Markus;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号