首页> 外文OA文献 >Energy Transfer Dynamics and Dopant Luminescence in Mn-Doped CdS/ZnS Core/Shell Nanocrystals
【2h】

Energy Transfer Dynamics and Dopant Luminescence in Mn-Doped CdS/ZnS Core/Shell Nanocrystals

机译:Mn掺杂CdS / ZnS核/壳纳米晶体的能量转移动力学和掺杂剂发光

摘要

Mn-doped II-VI semiconductor nanocrystals exhibit bright dopant photoluminescence that has potential usefulness for light emitting devices, temperature sensing, and biological imaging. The bright luminescence comes from the 4T1?6A1 transition of the Mn2+ d electrons after the exciton-dopant energy transfer, which reroutes the exciton relaxation through trapping processes. The driving force of the energy transfer is the strong exchange coupling between the exciton and Mn2+ due to the confinement of exciton in the nanocrystal. The exciton-Mn spatial overlap affecting the exchange coupling strength is an important parameter that varies the energy transfer rate and the quantum yield of Mn luminescence. In this dissertation, this correlation is studied in radial doping location-controlled Mn-doped CdS/ZnS nanocrystals. Energy transfer rate was found decreasing when increasing the doping radius in the nanocrystals at the same core size and shell thickness and when increasing the size of the nanocrystals at a fixed doping radius.In addition to the exciton-Mn energy transfer discussed above, two consecutive exciton-Mn energy transfers can also occur if multiple excitons are generated before the relaxation of Mn (lifetime ~10^-4 - 10^-2 s). The consecutive exciton-Mn energy transfer can further excite the Mn2+ d electrons high in conduction band and results in the quenching of Mn luminescence. The highly excited electrons show higher photocatalytic efficiency than the electrons in undoped nanocrystals.Finally, the effect of local lattice strain on the local vibrational frequency and local thermal expansion was observed via the temperature-dependent Mn luminescence spectral linewidth and peak position in Mn-doped CdS/ZnS nanocrystals. The local lattice strain on the Mn2+ ions is varied using the large core/shell lattice mismatch (~7%) that creates a gradient of lattice strain at various radial locations. When doping the Mn2+ closer to the core/shell interface, the stronger lattice strain softens the vibrational frequency coupled to the 4T1?6A1 transition of Mn2+ (Mn luminescence) by ~50%. In addition, the lattice strain also increases the anharmonicity, resulting in larger local thermal expansion observed from the nearly an order larger thermal shift of the Mn luminescence compared to the Mn-doped ZnS nanocrystals without the core/shell lattice mismatch.
机译:Mn掺杂的II-VI半导体纳米晶体表现出明亮的掺杂剂光致发光,对发光器件,温度传感和生物成像具有潜在的实用性。明亮的发光来自激子-掺杂剂能量转移后Mn2 + d电子的4T1?6A1跃迁,该跃迁通过俘获过程改变了激子弛豫的路径。能量转移的驱动力是由于激子限制在纳米晶体中,激子与Mn2 +之间的强交换耦合。激子-Mn空间重叠影响交换耦合强度是一个重要的参数,它改变了Mn发光的能量转移速率和量子产率。本文在径向掺杂位置控制的Mn掺杂CdS / ZnS纳米晶体中研究了这种相关性。当在相同的核尺寸和壳厚度下增加纳米晶体的掺杂半径和在固定的掺杂半径下增加纳米晶体的尺寸时,发现能量传递速率降低。除了上述的激子-Mn能量传递,还有两个连续的如果在Mn弛豫之前(寿命〜10 ^ -4-10 ^ -2 s)产生了多个激子,则也会发生激子-Mn能量转移。连续的激子-Mn能量转移可以进一步激发导带高的Mn2 + d电子,并导致Mn发光的猝灭。高激发电子比未掺杂纳米晶体中的电子具有更高的光催化效率。最后,通过随温度变化的锰发光光谱线宽和掺杂锰的峰位置,观察了局部晶格应变对局部振动频率和局部热膨胀的影响。 CdS / ZnS纳米晶体。 Mn2 +离子上的局部晶格应变使用较大的核/壳晶格失配(〜7%)来改变,这会在各个径向位置产生晶格应变的梯度。当掺杂更靠近核/壳界面的Mn2 +时,较强的晶格应变将耦合到Mn2 +的4T1?6A1跃迁的振动频率(Mn发光)软化了约50%。另外,晶格应变也增加了非谐性,与没有核/壳晶格失配的Mn掺杂的ZnS纳米晶体相比,从Mn发光的几乎大一个数量级的热位移观察到导致更大的局部热膨胀。

著录项

  • 作者

    Chen Hsiang-Yun;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号