首页> 外文OA文献 >Hierarchical modeling of multi-scale dynamical systems using adaptive radial basis function neural networks: application to synthetic jet actuator wing
【2h】

Hierarchical modeling of multi-scale dynamical systems using adaptive radial basis function neural networks: application to synthetic jet actuator wing

机译:基于自适应径向基函数神经网络的多尺度动力学系统层次建模:在合成射流致动器机翼中的应用

摘要

To obtain a suitable mathematical model of the input-output behavior of highly nonlinear, multi-scale, nonparametric phenomena, we introduce an adaptive radial basis function approximation approach. We use this approach to estimate the discrepancy between traditional model areas and the multiscale physics of systems involving distributed sensing and technology. Radial Basis Function Networks offers the possible approach to nonparametric multi-scale modeling for dynamical systems like the adaptive wing with the Synthetic Jet Actuator (SJA). We use the Regularized Orthogonal Least Square method (Mark, 1996) and the RAN-EKF (Resource Allocating Network-Extended Kalman Filter) as a reference approach. The first part of the algorithm determines the location of centers one by one until the error goal is met and regularization is achieved. The second process includes an algorithm for the adaptation of all the parameters in the Radial Basis Function Network, centers, variances (shapes) and weights. To demonstrate the effectiveness of these algorithms, SJA wind tunnel data are modeled using this approach. Good performance is obtained compared with conventional neural networks like the multi layer neural network and least square algorithm. Following this work, we establish Model Reference Adaptive Control (MRAC) formulations using an off-line Radial Basis Function Networks (RBFN). We introduce the adaptive control law using a RBFN. A theory that combines RBFN and adaptive control is demonstrated through the simple numerical simulation of the SJA wing. It is expected that these studies will provide a basis for achieving an intelligent control structure for future active wing aircraft.
机译:为了获得高度非线性,多尺度,非参数现象的输入输出行为的合适数学模型,我们引入了自适应径向基函数逼近方法。我们使用这种方法来估计传统模型区域与涉及分布式传感和技术的系统的多尺度物理之间的差异。径向基函数网络为动态系统(如带有合成喷气执行器(SJA)的自适应机翼)的非参数多尺度建模提供了可能的方法。我们使用正则化最小二乘方法(Mark,1996年)和RAN-EKF(资源分配网络扩展的卡尔曼滤波器)作为参考方法。该算法的第一部分逐个确定中心的位置,直到达到误差目标并实现正则化。第二个过程包括用于调整径向基函数网络中所有参数,中心,方差(形状)和权重的算法。为了证明这些算法的有效性,使用此方法对SJA风洞数据进行了建模。与诸如多层神经网络和最小二乘算法的传统神经网络相比,可以获得良好的性能。完成这项工作后,我们使用离线径向基函数网络(RBFN)建立模型参考自适应控制(MRAC)公式。我们介绍了使用RBFN的自适应控制定律。通过SJA机翼的简单数值仿真,证明了将RBFN和自适应控制相结合的理论。预期这些研究将为实现未来主动翼飞机的智能控制结构提供基础。

著录项

  • 作者

    Lee Hee Eun;

  • 作者单位
  • 年度 2004
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号