首页> 外文OA文献 >Primary Cilia, Ciliogenesis and the Actin Cytoskeleton: A Little Less Resorption, A Little More Actin Please
【2h】

Primary Cilia, Ciliogenesis and the Actin Cytoskeleton: A Little Less Resorption, A Little More Actin Please

机译:原发性纤毛,cilio生物和肌动蛋白细胞骨架:吸收少一点,更多的actin请

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Primary cilia are microtubule-based organelles that extend from the apical surface of most mammalian cells, forming when the basal body (derived from the mother centriole) docks at the apical cell membrane. They act as universal cellular “antennae” in vertebrates that receive and integrate mechanical and chemical signals from the extracellular environment, serving diverse roles in chemo-, mechano- and photo-sensation that control developmental signaling, cell polarity and cell proliferation. Mutations in ciliary genes cause a major group of inherited developmental disorders called ciliopathies. There are very few preventative treatments or new therapeutic interventions that modify disease progression or the long-term outlook of patients with these conditions. Recent work has identified at least four distinct but interrelated cellular processes that regulate cilia formation and maintenance, comprising the cell cycle, cellular proteostasis, signaling pathways and structural influences of the actin cytoskeleton. The actin cytoskeleton is composed of microfilaments that are formed from filamentous (F) polymers of globular G-actin subunits. Actin filaments are organized into bundles and networks, and are attached to the cell membrane, by diverse cross-linking proteins. During cell migration, actin filament bundles form either radially at the leading edge or as axial stress fibers. Early studies demonstrated that loss-of-function mutations in ciliopathy genes increased stress fiber formation and impaired ciliogenesis whereas pharmacological inhibition of actin polymerization promoted ciliogenesis. These studies suggest that polymerization of the actin cytoskeleton, F-actin branching and the formation of stress fibers all inhibit primary cilium formation, whereas depolymerization or depletion of actin enhance ciliogenesis. Here, we review the mechanistic basis for these effects on ciliogenesis, which comprise several cellular processes acting in concert at different timescales. Actin polymerization is both a physical barrier to both cilia-targeted vesicle transport and to the membrane remodeling required for ciliogenesis. In contrast, actin may cause cilia loss by localizing disassembly factors at the ciliary base, and F-actin branching may itself activate the YAP/TAZ pathway to promote cilia disassembly. The fundamental role of actin polymerization in the control of ciliogenesis may present potential new targets for disease-modifying therapeutic approaches in treating ciliopathies.
机译:初级纤毛是从大多数哺乳动物细胞的顶端表面延伸的基于微管的细胞器,当基体(衍生自母线纤维)坞在顶端细胞膜截止时形成。它们在脊椎动物中充当通用细胞“天线”,该脊椎动物接受和整合来自细胞外环境的机械和化学信号,在化学,机械和光敏中提供不同的作用,该方法控制发育信号传导,细胞极性和细胞增殖。睫状基因的突变导致主要的遗传性发育障碍称为CilioPathies。有很少的预防性治疗或新的治疗干预措施,可修饰疾病进展或这些病症的患者的长期前景。最近的工作已经确定了至少四种不同但相互关联的细胞过程,其调节纤毛形成和维持,包括细胞周期,细胞蛋白质,信号传导途径和肌动蛋白细胞骨架的结构影响。肌动蛋白细胞骨架由微丝由球状G-肌动蛋白亚基的丝状(F)聚合物形成。肌动蛋白长丝被组织成束和网络,并通过多种交联蛋白连接到细胞膜。在细胞迁移期间,肌动蛋白束径向在前缘或轴向应力纤维处形成。早期的研究表明,Cileopathy基因中的功能突变突变增加了应力纤维形成和含有受损的纤毛菌,而肌动蛋白聚合的药理学抑制促进了纤毛发生。这些研究表明,肌动蛋白细胞骨架,F-肌动蛋白支化和应力纤维的形成全部抑制原发性纤毛纤维形成,而actin的解聚或耗尽增强纤霉菌。在这里,我们审查了这些对纤毛生成作用的机械基础,其包括几种在不同时间尺寸的音乐会作用的细胞过程。肌动蛋白聚合是纤毛靶向囊泡输送的物理障碍,以及纤毛发生所需的膜重塑。相比之下,肌动蛋白可以通过定位睫状基质的拆卸因子来引起纤毛损失,并且F-actin支化本身可以激活YAP / TAZ途径以促进纤毛拆卸。肌动蛋白聚合在纤毛发生中的控制中的基本作用可能存在潜在的疾病改性治疗方法治疗纤度疗法的新靶标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号