首页> 外文OA文献 >Compact Shape Morphing Tensegrity Robots Capable of Locomotion
【2h】

Compact Shape Morphing Tensegrity Robots Capable of Locomotion

机译:紧凑的形状变形技术能力能够运动的机器人

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Robustness, compactness, and portability of tensegrity robots make them suitable candidates for locomotion on unknown terrains. Despite these advantages, challenges remain relating to ease of fabrication, shape morphing (packing-unpacking), and locomotion capabilities. The paper introduces a design methodology for fabricating tensegrity robots of varying morphologies with modular components. The design methodology utilizes perforated links, coplanar (2D) alignment of components and individual cable tensioning to achieve a 3D tensegrity structure. These techniques are utilized to fabricate prism (three-link) tensegrity structures, followed by tensegrity robots in icosahedron (six-link), and shpericon (curved two-link) formation. The methodology is used to explore different robot morphologies that attempt to minimize structural complexity (number of elements) while facilitating smooth locomotion (impact between robot and surface). Locomotion strategies for such robots involve altering the position of center-of-mass (referred to as internal mass shifting) to induce “tip-over.” As an example, a sphericon formation comprising of two orthogonally placed circular arcs with conincident center illustrates smooth locomotion along a line (one degree of freedom). The design of curved links of tensegrity mechanisms facilitates continuous change of the point of contact (along the curve) that results from the tip-over. This contrasts to the sudden and piece-wise continuous change for the case of robots with traditional straight links which generate impulse reaction forces during locomotion. The two resulting robots—the Icosahedron and the Sphericon Tensegrity Robots—display shape morphing (packing-unpacking) capabilities and achieve locomotion through internal mass-shifting. The presented static equilibrium analysis of sphericon with mass is the first step in the direction of dynamic locomotion control of these curved link robots.
机译:坚固性,紧凑,紧凑和可移植性,使其适用于未知地形上的运动候选人。尽管有这些优点,但挑战仍然与易于制造,形状变形(包装 - 解包)和运动能力有关。本文介绍了一种用模块化成分制造改变形态的牙态机器人的设计方法。设计方法利用穿孔链路,共面(2D)对准组件和各个电缆张紧以实现3D矩形结构。这些技术用于制造棱镜(三连杆)长度结构,其次是ICOSAHEDRON(六连杆)中的Tencygrity机器人,以及Shpericon(弯曲的双链路)形成。该方法用于探索不同的机器人形态,试图最小化结构复杂性(元素数量),同时促进平滑运动(机器人和表面之间的冲击)。此类机器人的运动策略涉及改变质量中心(称为内部质量转移)的位置,以诱导“倾斜”。作为示例,包括具有与优异中心的两个正交放置的圆弧的球形形成示出了沿线(一种自由度)的平滑运动。弯曲机构的弯曲链路的设计有助于连续变化从倾斜度产生的接触点(沿曲线)。这与具有传统直链路的机器人的机器人的突然和分散的连续变化形成鲜明对比,该机器人在运动期间产生脉冲反应力。两个由此产生的机器人 - ICOSAHEDRON和球形恒定的机器人 - 显示形状变形(包装 - 解包)能力,通过内部大规模转移实现运动量。具有质量的球形静态平衡分析是这些弯曲链路机器人动态运动方向的第一步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号