首页> 外文OA文献 >Extension of the Bissell–Johnson plasma-sheath model for application to fusion-relevant and general plasmas
【2h】

Extension of the Bissell–Johnson plasma-sheath model for application to fusion-relevant and general plasmas

机译:延伸融合相关和普通等离子体的Bissell-Johnson等离子鞘模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

This article presents an approach to solving a special Fredholm-type integral equation of the first kind with a particular kernel containing a modified Bessel function for applications in plasma physics. From the physical point of view, the problem was defined by Bissell and Johnson (B&J) [Phys. Fluids 30,779 (1987)] as a task to find the potential profile and the ion velocity distribution function in a plane-parallel discharge with a Maxwellian ion source. The B&J model is a generalization of the well-known Tonks-Langmuir (T&L) [Phys. Rev. 34, 876 (1929)] discharge model characterized by a "cold" ion source. Unlike the T&L model, which can be readily solved analytically, attempts to solve the B&J model with a "warm" ion source have been done only numerically. However, the validity of numerical solutions up to date remains constrained to a rather limited range of a crucial independent parameter of the B&J integral equation, which mathematically is the width of a Gaussian distribution and phzsically represents the ion temperature. It was solved only for moderately warm ion sources. This paper presents the exact numerical solution of the B&J model, which is valid without any restriction regarding the above-mentioned parameter. It is shown that the ion temperature is very different from the temperature of the ion source. The new results with high-temperature ion sources are not only of particular importance for understanding and describing the plasma-sheath boundary in fusion plasmas, but are of considerable interest for discharge problems in general. The eigenvalue of the problem, found analytically by Harrison and Thompson [Proc. Phys. Soc. 74, 145 (1959)] for the particular case of a cold ion source, is here extended to arbitrary ion-source temperatures.
机译:本文介绍了一种方法来解决第一种特殊的Fredholm型积分方程,其具有包含改进的贝塞尔功能的特定核,用于在等离子体物理学中的应用。从物理角度来看,问题由Bissell和Johnson(B&J)[物理。流体30,779(1987)]作为在具有MaxWellian离子源的平面平行放电中找到潜在轮廓和离子速度分布功能的任务。 B&J模型是众所周知的Tonks-Langmuir(T&L)的概括[物理。 Rev. 34,876(1929)]放电模型,其特征在于“冷”离子源。与T&L型号不同,可以在分析地进行分析地解决,尝试用“温暖”离子源来解决“温暖”离子源的尝试已经在数值上进行。然而,最新的数值解决方案的有效性仍然受到B&族积分方程的关键独立参数的约束范围,其数学上是高斯分布的宽度,并且Phzly表示离子温度。它仅为适度温暖的离子源解决。本文介绍了B&族型号的精确数字解决方案,无论有关于上述参数都没有任何限制。结果表明,离子温度与离子源的温度非常不同。具有高温离子源的新结果不仅特别重要地理解和描述融合等离子体中的等离子体鞘边界,而且对放电问题具有相当大的兴趣。问题的特征值,通过哈里森和汤普森分析发现[proc。物理。 SOC。如图74,145(1959)]在这里,对于冷离子源的特定情况,在此延伸到任意离子源温度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号