首页> 外文OA文献 >Mathematical modeling for the convection boundary layer flow in a viscous fluid with newtonian heating and convective boundary conditions
【2h】

Mathematical modeling for the convection boundary layer flow in a viscous fluid with newtonian heating and convective boundary conditions

机译:具有牛顿热和对流边界条件的粘性流体中对流边界层流动的数学模型

摘要

Problems of convection boundary layer flow are important in engineering and industrialudactivities. Such flows are applied to manage the thermal effects in many industrialudoutputs for example in electronic devices, computer power supply and also in engineudcooling system such as cooling fins in a car radiator. In modeling the convectiveudboundary layer flow problems, there are four common boundary conditions consideredudnamely as the constant or prescribe wall temperature, constant or prescribe surface heatudflux, Newtonian heating and conjugate or convective boundary conditions. Generally,udthe boundary conditions that are usually applied are the constant/prescribe walludtemperature or constant/prescribe surface heat flux. In this study, the boundaryudcondition considered are the Newtonian heating and convective boundary conditions.udThe Newtonian heating is the heat transfer from the surface is taken to be proportionaludto the local surface temperature and which is usually termed conjugate convective flowudand convective boundary conditions is where heat is supplied through a boundingudsurface of finite thickness and finite heat capacity. The interface temperature is notudknown a priori but depends on the intrinsic properties of the system, namely the thermaludconductivity of the fluid or solid. The mathematical modeling for the convectionudboundary layer flow in a viscous fluid is investigated. Three problem have been studied,udthere are forced convection on a stagnation point flow over a stretching sheet, theudextended from the first problem by considering the effects of magnetohydrodynamic inuda presence of thermal radiation and the mixed convection on a stagnation point flowudpast a stretching vertical surface. All of the governing equations which is in the form ofudnon linear partial differential equation from each problem are reduced to ordinaryuddifferential equations by using similarity transformation before being solvedudnumerically by using the implicit finite difference scheme known as the Keller-boxudmethod. The numerical codes in the form of computer programmes are developed byudusing the MATLAB software. Six parameter which is the Prandtl number, stretchingudparameter, conjugate parameter, magnetic parameter, thermal radiation parameter andudbuoyancy parameter are considered. The features of the flow and heat transferudcharacteristics for various values of these parameter are analyzed and discussed. It isudfound that, the increase of Prandtl number, stretching parameter, thermal radiationudparameter and buoyancy parameter in an assisting buoyant flow results a decrease inudsurface temperature. Meanwhile, the trend goes opposite with magnetic parameter,udconjugate parameter and buoyancy parameter in an opposite buoyant flow. Futhermore,udit is found that the trends for skin friction coefficient, temperature and velocity profilesudfor convective boundary conditions is quite similar to the Newtonian heating case. Onudthe other hand for heat transfer profiles, it is found that the trends is contrary for alludparameters considered except the conjugate parameter.
机译:对流边界层流动问题在工程和工业活动中很重要。此类流可用于管理许多工业输出中的热效应,例如在电子设备,计算机电源以及发动机过冷却系统(例如汽车散热器中的散热片)中。在对流边界层流动问题的建模中,有四个常见的边界条件被考虑为: u003cWBR u003c u200b u003c u003c u200b u003c u003c u200b u003c u200b u003c u200b u003c u003c u003c u003c u003c u003c u003c u200b u200b u200b u200b u200b表面热 udflux,牛顿加热和共轭或对流边界条件。通常,通常使用的边界条件是恒定/规定壁温/恒定温度或恒定/规定表面热通量。在本研究中,考虑的边界 udcondition是牛顿加热和对流边界条件。 ud牛顿加热是从表面传热与局部表面温度成比例 ud,通常称为共轭对流 udand对流边界条件是通过有限厚度和有限热容量的边界表面提供热量的地方。界面温度不是先验的,而是取决于系统的固有特性,即流体或固体的导热/非导热性。研究了粘性流体中对流/边界层流动的数学模型。研究了三个问题,在拉伸片上的滞止点流上有强制对流,从第一个问题开始扩展,考虑了磁流体动力不存在热辐射和混合对流对滞止点流的影响 udpast拉伸垂直表面。每个问题采用 udnon线性偏微分方程形式的所有控制方程,在使用已知的Keller-box隐式有限差分方案进行数字求解之前,先通过相似性变换简化为普通 ud微分方程。 udmethod。通过使用MATLAB软件来开发计算机程序形式的数字代码。考虑了六个参数,即普朗特数,拉伸 ud参数,共轭参数,磁参数,热辐射参数和浮力参数。分析和讨论了这些参数的各种值的流动和传热特征。可以发现,辅助浮力流中普朗特数,拉伸参数,热辐射超参数和浮力参数的增加导致表面温度的降低。同时,在相反的浮力流中,磁参数,共轭参数和浮力参数的趋势相反。此外, udit发现对流边界条件的皮肤摩擦系数,温度和速度分布 ud的趋势与牛顿加热情况非常相似。另一方面,对于传热曲线,发现除了共轭参数外,所有考虑的参数的趋势都是相反的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号