首页> 外文OA文献 >Synthesis and Lithium Storage Properties of Zn, Co and Mg doped SnO2 Nano Materials
【2h】

Synthesis and Lithium Storage Properties of Zn, Co and Mg doped SnO2 Nano Materials

机译:Zn,Co和Mg掺杂SnO2纳米材料的合成及储锂性能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

In this paper, we show that magnesium and cobalt doped SnO2 (Mg-SnO2 and Co-SnO2) nanostructures have profound influence on the discharge capacity and coulombic efficiency of lithium ion batteries (LIBs) employing pure SnO2 and zinc doped SnO2 (Zn-SnO2) as benchmark materials. The materials were synthesized via sol-gel technique. The structural, chemical and morphological characterization indicates that the Zn, Mg and Co dopants were effectively implanted into the SnO2 lattice and that Co doping significantly reduced the grain growth. The electrochemical performances of the nanoparticles were investigated using galvanostatic cycling, cyclic voltammetry and electrochemical impedance spectroscopy (EIS). The Co-SnO2 electrode delivered a reversible capacity of around 575 mAh g−1 at the 50th cycle with capacity retention of ∼83% at 60 mA g−1current rate. A capacity of ∼415 mAh g−1 when cycling at 103 mA g−1and >60% improvement in coulombic efficiency compared to the pure compound clearly demonstrate the superiority of Co-SnO2 electrodes. The improved electrochemical properties are attributed to the reduction in particle size of the material up to a few nanometers, which efficiently reduced the distance of lithium diffusion pathway and reduction in the volume change by alleviating the structural strain caused during the Li+ intake/outtake process. The EIS analyses of the electrodes corroborated the difference in electrochemical performances of the electrodes: the Co-SnO2 electrode showed the lowest resistance at different voltages during cycling among other electrodes.
机译:在本文中,我们表明镁和钴掺杂的SnO2(Mg-SnO2和Co-SnO2)纳米结构对使用纯SnO2和锌掺杂的SnO2(Zn-SnO2)的锂离子电池(LIBs)的放电容量和库伦效率具有深远的影响。 )作为基准材料。该材料通过溶胶-凝胶技术合成。结构,化学和形态特征表明,Zn,Mg和Co掺杂剂已有效地注入SnO2晶格中,Co掺杂显着降低了晶粒长大。使用恒电流循环,循环伏安法和电化学阻抗谱(EIS)研究了纳米粒子的电化学性能。 Co-SnO2电极在第50个循环时可逆容量约为575 mAh g-1,在60 mA g-1电流速率下的容量保持率约为83%。当以103 mA g-1循环时的容量约为415 mAh g-1,与纯化合物相比库仑效率提高60%以上,清楚地证明了Co-SnO2电极的优越性。改善的电化学性质归因于材料的粒径减小至几纳米,这通过减轻在Li +进/出过程中引起的结构应变而有效地缩短了锂扩散路径的距离并减小了体积变化。电极的EIS分析证实了电极电化学性能的差异:在其他电极循环期间,Co-SnO2电极在不同电压下显示出最低的电阻。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号