首页> 外文OA文献 >Experimental measurements and prediction of thermophysical properties of hydrocarbon mixtures using nonlinear models
【2h】

Experimental measurements and prediction of thermophysical properties of hydrocarbon mixtures using nonlinear models

机译:非线性模型的烃混合物热物理性质的实验测量和预测

摘要

Nowadays, thermophysical properties of hydrocarbon mixtures play a vital role in process industries. A thermophysical asset of the solvent mixture properties provides information for distillation, extraction operations, material balance and energy balance in process industries. They also play an important role in solving problems in heat transfer, mass transfer and fluid flow. Studies on different thermophysical properties of liquid mixtures within a wide ranges of composition and temperatures are valuable sources of information that can be used to examine the relationship between the internal structure of the system and its physical properties. Though a lot of work has been done in the case of pure liquids, data on thermophysical properties of liquid mixtures are not available for many systems. Hence the thermophysical properties of liquid mixtures have been studied for four binary liquid mixtures in the current investigation. Thermophysical properties of the following hydrocarbon binary liquid mixtures have been determined by using Oswald Viscometer and Pycnometer at 303.15, 308.15 and 313.15 K.ud1, 4 Dioxane + Bromobenzeneud1, 4 Dioxane + EthylbenzeneudAcetophenone + P-XyleneudAcetophenone + O-XyleneudThe thermophysical properties such as density, viscosity of binary liquid mixtures were determined experimentally over the entire composition range at 303.15K, 308.15K and 313.15K. The experimentally determined thermophysical properties of the binary liquid mixtures were used to calculate the excess molar volume, VE and viscosity deviations Δη. The excess thermophysical properties of liquid mixtures provide additional information regarding molecular interactions. Hence the intermolecular interactions of the mixtures are discussed with the help of excess properties. A perusal of the literature revealed that the predictions of thermophysical properties of liquid mixtures was scarce. With an aim, the thermophysical properties of density, viscosity, excess molar volume VE, and viscosity deviations Δη of liquid mixtures were predicted using various nonlinear models. The excess values of thermophysical properties of binary hydrocarbon liquid mixtures were correlated using Redlich-Kister polynomial equation to obtain their coefficients and standard deviations. Grundberg-Nissan, Krishnan-Laddha, McAllister and Jouyban-Acree viscosity models were used for predicting the viscosity of hydrocarbon liquid mixtures. The parameters of McAllister model were determined using a programming software and other models parameters were determined using polynomial equations. The experimental values and model predictions were compared to get the standard deviation for each model. The observed values of excess molar volume VE, viscosity deviations Δη data for the hydrocarbon mixtures support the main factor of gradual disruption of the self-associated aromatic hydrocarbon molecules and confirm that the hydrogen bonds and dipolar interaction in aromatic hydrocarbons makes VE and Δη positive and negative deviations. The weak physical intermolecular interactions between the aromatic hydrocarbon molecules dominate over the structure-breaking effect of hydrocarbon mixtures on the addition of aromatic hydrocarbons. Interactions between the liquids in hydrocarbon mixtures are strong and weak dispersive type interactions. Redlich-Kister polynomial equation represented the excess molar volume and viscosity deviations which is indicated accurately well by percent standard deviation of less than 1.25. The viscosity data tailored to Grundberg-Nissan, Krishnan-Laddha, Jouyban–Acree and McAllister models to derive the binary coefficients. Standard deviations have been considered between the fitted outcomes and the calculated data is helpful in deliberate mixing behavior of the binary mixtures. It can be concluded that in all cases, the data values found correlated with the corresponding models very well for this mixtures. The molecular interactions existing between the components and comparison of liquid mixtures were also discussed. The obtained experimental and correlation data is greatly reducing the difficulties in a tedious experimental work and provides a faster way of predicting the property values. The use of data correlation enables for prediction of data in future. Once a correlation is known with strong relationship between the variables of the study, then the prediction will be more accurate. Other than that, the use of these correlation models provides knowledge on the real behaviour of the liquid mixtures using only the experimental results and properties of the pure components.
机译:如今,烃混合物的热物理性质在加工工业中起着至关重要的作用。溶剂混合物性质的热物理资产可为过程工业中的蒸馏,萃取操作,物料平衡和能量平衡提供信息。它们在解决传热,传质和流体流动方面也起着重要作用。在广泛的组成和温度范围内对液体混合物的不同热物理性质进行研究是有价值的信息来源,可用于检查系统内部结构与其物理性质之间的关系。尽管在纯液体的情况下已经完成了许多工作,但是液体混合物的热物理性质数据对于许多系统而言并不可用。因此,在当前的研究中,已经对四种二元液体混合物的液体混合物的热物理性质进行了研究。通过使用Oswald粘度计和比重瓶在303.15、308.15和313.15 K下确定了下列烃二元液体混合物的热物理性质。 ud1,4 Dioxane + Bromobenzene ud1,4 Dioxane + Ethylbenzene udBettophenone + P-Xylene udAcetophenone + O -二甲苯 ud在303.15K,308.15K和313.15K的整个组成范围内,通过实验确定了二元液体混合物的热物理性质,例如密度,粘度。通过实验确定的二元液体混合物的热物理性质用于计算过量的摩尔体积,VE和粘度偏差Δη。液体混合物的过量热物理性质提供了有关分子相互作用的其他信息。因此,借助于过量的性质讨论了混合物的分子间相互作用。细读文献表明,对液体混合物热物理性质的预测很少。目的是使用各种非线性模型预测液体混合物的密度,粘度,过量摩尔体积VE和粘度偏差Δη的热物理性质。使用Redlich-Kister多项式方程式对二元烃液体混合物的热物理性质的超值进行关联,以获得其系数和标准偏差。使用Grundberg-Nissan,Krishnan-Laddha,McAllister和Jouyban-Acree粘度模型预测烃类液体混合物的粘度。使用编程软件确定McAllister模型的参数,并使用多项式方程确定其他模型的参数。比较实验值和模型预测值,以获得每个模型的标准偏差。烃混合物的过量摩尔体积VE的观测值,粘度偏差Δη数据支持了自缔合芳烃分子逐渐破坏的主要因素,并证实了芳烃中的氢键和偶极相互作用使VE和Δη为正,负偏差。芳烃分子之间较弱的物理分子间相互作用主导着烃混合物对芳烃添加的破坏结构作用。烃混合物中液体之间的相互作用为强分散型和弱分散型相互作用。 Redlich-Kister多项式方程式表示了过量的摩尔体积和粘度偏差,这可以通过小于1.25的标准偏差百分数准确地很好地表明。根据Grundberg-Nissan,Krishnan-Laddha,Jouyban-Acree和McAllister模型量身定制的粘度数据可得出二元系数。已经考虑了拟合结果之间的标准偏差,并且所计算的数据有助于二元混合物的故意混合行为。可以得出结论,在所有情况下,对于这种混合物,发现的数据值都与相应的模型非常相关。还讨论了组分之间存在的分子相互作用以及液体混合物的比较。获得的实验数据和相关数据极大地减少了繁琐的实验工作中的困难,并提供了一种更快的预测特性值的方法。数据相关性的使用使得将来可以预测数据。一旦已知研究变量之间具有很强的相关性,则预测将更加准确。除此之外,仅使用实验结果和纯组分的性质,这些相关模型的使用即可提供有关液体混合物实际行为的知识。

著录项

  • 作者

    Redrouthu Ramesh;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号