首页> 外文OA文献 >Exoelectrogens: Recent Advances in Molecular Drivers Involved in Extracellular Electron Transfer and Strategies used to Improve it for Microbial Fuel Cell Applications
【2h】

Exoelectrogens: Recent Advances in Molecular Drivers Involved in Extracellular Electron Transfer and Strategies used to Improve it for Microbial Fuel Cell Applications

机译:外生电子:涉及细胞外电子转移的分子驱动器的最新进展以及用于微生物燃料电池应用的改善其的策略

摘要

The use of exoelectrogens in microbial fuel cells (MFCs) has given a wide berth to the addition of artificial electron shuttles/conduits as they have the molecular machinery to transfer the electrons exogenously to the electrode surface or to soluble or insoluble electron acceptors. Exoelectrogens transfer the electrons either directly to the electrode surface (via c-Cyts or pili) and/or mediate them by secreting electron shuttles such as, flavins or pyocyanin. Such microorganisms form electroactive biofilms on the electrode surface. They produce cyclopropane fatty acids and exopolysaccahride matrix to modify surface charge, which also provides favorable anchoring points for the retention of c-type cytochromes (c-Cyts). The longer subunit of PilA plays a vital role in cell attachment in the case of a well-known exoelectrogen Geobacter sulfurreducens during biofilm formation. G. sulfurreducens relies on flavin molecules for mediated electron transfer (MET) during initial biofilm formation and on c-Cyts and pili for the direct electron transfer (DET) during the later phase of biofilm formation. A new protein, cbcl inner membrane multiheme c-Cyt has been revealed in G. sulfurreducens that participates in the electron transfer when electron acceptor with low reduction potential (below 0.1 V) is used in the MFCs. On the other hand, inner membrane c-type cytochrome ImcH is involved in the reduction of electron acceptors exhibiting the potential above 0.1 V. Shewanella oneidensis, another exoelectrogen expresses CheA-3 histidine protein kinase for chemotactic responses to electron acceptors. S. oneidensis do not produce pili and utilizes flavin-cytochrome complexes to regulate the electron transfer to the electrode surfaces. The inherent electron transfer rates can be increased in order to improve the MFC performance. Such strategies as the anode surface modification with nanoparticles, expression of the genes for flavin biosynthesis pathway in the exoelectrogens, and chemical treatment of the microbial membrane have shown to increase the current outputs in the MFCs. This article provides the latest information about the exoelectrogens and molecular drivers involved in extracellular electron transfer (EET) mechanisms, and also summarizes the important characteristics of electroactive biofilms. It also highlights the different approaches that have been employed to facilitate the EET mechanisms and some uncommon exoelectrogens used in the MFCs recently.
机译:在微生物燃料电池(MFCs)中使用外生电子为人造电子航天器/导管提供了广泛的支持,因为它们具有分子机制将外源电子转移到电极表面或可溶或不可溶电子受体。外生电子将电子直接转移到电极表面(通过c-Cyts或菌毛),和/或通过分泌电子穿梭(例如黄素或黄花青素)介导电子。这样的微生物在电极表面上形成电活性生物膜。它们产生环丙烷脂肪酸和胞外多糖基质,以修饰表面电荷,这也为保留c型细胞色素(c-Cyts)提供了有利的锚定点。 PilA的较长亚基在生物膜形成过程中众所周知的外加电的Geobacter sulfreducens的情况下在细胞附着中起着至关重要的作用。 G.thioreducens依赖于黄素分子在最初的生物膜形成过程中介导电子转移(MET),并依赖c-Cyts和菌毛在随后的生物膜形成阶段进行直接电子转移(DET)。一种新的蛋白质,cbcl内膜多血红素c-Cyt被发现在G.sulfreducens中,当在MFC中使用低还原电位(低于0.1 V)的电子受体时,它参与电子转移。另一方面,内膜c型细胞色素ImcH参与了电子受体的还原,该受体表现出高于0.1 V的电势。Shewanella oneidensis,另一种外生电子表达CheA-3组氨酸蛋白激酶,对电子受体具有趋化反应。沙门氏菌不产生菌毛,并利用黄素-细胞色素复合物调节电子向电极表面的转移。可以提高固有的电子传输速率,以改善MFC性能。诸如用纳米粒子修饰阳极表面,黄素生物合成途径的基因在外生电子中的表达以及微生物膜的化学处理等策略已显示出可增加MFC中的电流输出。本文提供了有关胞外电子转移(EET)机制中涉及的外生电子和分子驱动器的最新信息,并总结了电活性生物膜的重要特征。它还强调了已被用来促进EET机制的不同方法以及最近在MFC中使用的一些不常见的外生电子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号