首页> 外文OA文献 >The Reaction Mechanism with Free Energy Barriers for Electrochemical Dihydrogen Evolution on MoS_2
【2h】

The Reaction Mechanism with Free Energy Barriers for Electrochemical Dihydrogen Evolution on MoS_2

机译:MoS2上带有自由能垒的电化学制氢反应机理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We report density functional theory (M06L) calculations including Poisson–Boltzmann solvation to determine the reaction pathways and barriers for the hydrogen evolution reaction (HER) on MoS_2, using both a periodic two-dimensional slab and a Mo_(10)S_(21) cluster model. We find that the HER mechanism involves protonation of the electron rich molybdenum hydride site (Volmer–Heyrovsky mechanism), leading to a calculated free energy barrier of 17.9 kcal/mol, in good agreement with the barrier of 19.9 kcal/mol estimated from the experimental turnover frequency. Hydronium protonation of the hydride on the Mo site is 21.3 kcal/mol more favorable than protonation of the hydrogen on the S site because the electrons localized on the Mo–H bond are readily transferred to form dihydrogen with hydronium. We predict the Volmer–Tafel mechanism in which hydrogen atoms bound to molybdenum and sulfur sites recombine to form H_2 has a barrier of 22.6 kcal/mol. Starting with hydrogen atoms on adjacent sulfur atoms, the Volmer–Tafel mechanism goes instead through the M–H + S–H pathway. In discussions of metal chalcogenide HER catalysis, the S–H bond energy has been proposed as the critical parameter. However, we find that the sulfur–hydrogen species is not an important intermediate since the free energy of this species does not play a direct role in determining the effective activation barrier. Rather we suggest that the kinetic barrier should be used as a descriptor for reactivity, rather than the equilibrium thermodynamics. This is supported by the agreement between the calculated barrier and the experimental turnover frequency. These results suggest that to design a more reactive catalyst from edge exposed MoS2, one should focus on lowering the reaction barrier between the metal hydride and a proton from the hydronium in solution.
机译:我们报告了密度泛函理论(M06L)计算,包括泊松–玻尔兹曼溶剂化,以确定使用周期性二维平板和Mo_(10)S_(21)的MoS_2上的氢放出反应(HER)的反应途径和障碍集群模型。我们发现,HER机制涉及富含电子的氢化钼位点的质子化(Volmer–Heyrovsky机制),导致计算出的自由能垒为17.9 kcal / mol,与实验估算的19.9 kcal / mol的势垒高度吻合周转频率。氢化物在Mo位上的氢化物氢质子化比在S位上氢的质子化更有利于21.3 kcal / mol,这是因为位于Mo–H键上的电子易于与水合氢转移形成二氢。我们预测Volmer-Tafel机理,其中结合到钼上的氢原子和硫原子重组形成H_2,其势垒为22.6 kcal / mol。从相邻硫原子上的氢原子开始,Volmer-Tafel机制转而通过MH + SH途径。在金属硫属元素化物HER催化的讨论中,已提出了S–H键能作为关键参数。但是,我们发现硫氢物种并不是重要的中间体,因为该物种的自由能在确定有效的激活屏障方面没有直接作用。相反,我们建议应将动力学壁垒用作反应性的指标,而不是平衡热力学。计算的壁垒和实验周转频率之间的一致性支持了这一点。这些结果表明,要从边缘暴露的MoS2设计一种更具反应性的催化剂,应着重降低溶液中水合氢与金属氢化物和质子之间的反应势垒。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号