首页> 外文OA文献 >Stochastic Analysis, Model and Reliability Updating of Complex Systems with Applications to Structural Dynamics
【2h】

Stochastic Analysis, Model and Reliability Updating of Complex Systems with Applications to Structural Dynamics

机译:复杂系统的随机分析,模型和可靠性更新及其在结构动力学中的应用

摘要

In many engineering applications, it is a formidable task to construct mathematical modelsudthat are expected to produce accurate predictions of the behavior of a system of interest.udDuring the construction of such predictive models, errors due to imperfect modeling anduduncertainties due to incomplete information about the system and its environment (e.g.,udinput or excitation) always exist and can be accounted for appropriately by usingudprobability logic. To assess the system performance subjected to dynamic excitations, audstochastic system analysis considering all the uncertainties involved has to be performed. Inudengineering, evaluating the robust failure probability (or its complement, robust reliability)udof the system is a very important part of such stochastic system analysis. The word ‘robust’udis used because all uncertainties, including those due to modeling of the system, are takenudinto account during the system analysis, while the word ‘failure’ is used to refer toudunacceptable behavior or unsatisfactory performance of the system output(s). Wheneverudpossible, the system (or subsystem) output (or maybe input as well) should be measured toudupdate models for the system so that a more robust evaluation of the system performanceudcan be obtained. In this thesis, the focus is on stochastic system analysis, model andudreliability updating of complex systems, with special attention to complex dynamic systemsudwhich can have high-dimensional uncertainties, which are known to be a very challengingudproblem. Here, full Bayesian model updating approach is adopted to provide a robust andudrigorous framework for these applications due to its ability to characterize modelinguduncertainties associated with the underlying system and to its exclusive foundation on theudprobability axioms. First, model updating of a complex system which can have high-dimensional uncertaintiesudwithin a stochastic system model class is considered. To solve the challengingudcomputational problems, stochastic simulation methods, which are reliable and robust toudproblem complexity, are proposed. The Hybrid Monte Carlo method is investigated and itudis shown how this method can be used to solve Bayesian model updating problems ofudcomplex dynamic systems involving high-dimensional uncertainties. New formulae forudMarkov Chain convergence assessment are derived. Advanced hybrid Markov ChainudMonte Carlo simulation algorithms are also presented in the end.udNext, the problem of how to select the most plausible model class from a set of competingudcandidate model classes for the system and how to obtain robust predictions from theseudmodel classes rigorously, based on data, is considered. To tackle this problem, Bayesianudmodel class selection and averaging may be used, which is based on the posteriorudprobability of different candidate classes for a system. However, these require calculationudof the evidence of the model class based on the system data, which requires theudcomputation of a multi-dimensional integral involving the product of the likelihood andudprior defined by the model class. Methods for solving the computationally challengingudproblem of evidence calculation are reviewed and new methods using posterior samples areudpresented.udMultiple stochastic model classes can be created even there is only one embeddeduddeterministic model. These model classes can be viewed as a generalization of theudstochastic models considered in Kalman filtering to include uncertainties in the parametersudcharacterizing the stochastic models. State-of-the-art algorithms are used to solve theudchallenging computational problems resulting from these extended model classes. Bayesianudmodel class selection is used to evaluate the posterior probability of an extended modeludclasse and the original one to allow a data-based comparison. The problem of calculatingudrobust system reliability is also addressed. The importance and effectiveness of theudproposed method is illustrated with examples for robust reliability updating of structural systems. Another significance of this work is to show the sensitivity of the results ofudstochastic analysis, especially the robust system reliability, to how the uncertainties areudhandled, which is often ignored in past studies.udA model validation problem is then considered where a series of experiments are conductedudthat involve collecting data from successively more complex subsystems and these data areudto be used to predict the response of a related more complex system. A novel methodologyudbased on Bayesian updating of hierarchical stochastic system model classes using suchudexperimental data is proposed for uncertainty quantification and propagation, modeludvalidation, and robust prediction of the response of the target system. Recently-developedudstochastic simulation methods are used to solve the computational problems involved.udFinally, a novel approach based on stochastic simulation methods is developed usingudcurrent system data, to update the robust failure probability of a dynamic system which willudbe subjected to future uncertain dynamic excitations. Another problem of interest is toudcalculate the robust failure probability of a dynamic system during the time when theudsystem is subjected to dynamic excitation, based on real-time measurements of some outputudfrom the system (with or without corresponding input data) and allowing for modelinguduncertainties; this generalizes Kalman filtering to uncertain nonlinear dynamic systems. Forudthis purpose, a novel approach is introduced based on stochastic simulation methods toudupdate the reliability of a nonlinear dynamic system, potentially in real time if theudcalculations can be performed fast enough.
机译:在许多工程应用中,构建数学模型 ud是一项艰巨的任务,它可以对目标系统的行为进行准确的预测。 ud在此类预测模型的构建过程中,由于建模不完善而导致的错误和由于模型的不确定性关于系统及其环境的不完整信息(例如, udinput或激励)始终存在,并且可以使用 udprobability逻辑适当地加以说明。为了评估动态激励下的系统性能,必须进行考虑了所有不确定性的随机系统分析。在工程设计中,评估系统的鲁棒故障概率(或其补充,鲁棒可靠性) ud是这种随机系统分析的非常重要的部分。之所以使用“健壮”一词是因为在系统分析过程中考虑了所有不确定性,包括由于系统建模而引起的不确定性,而使用“故障”一词则是指不可接受的行为或性能的不令人满意。系统输出。只要有可能,就应该对系统的模型进行测量,以测量系统(或子系统)的输出(或输入),以便获得对系统性能的更可靠的评估。本文的研究重点是复杂系统的随机系统分析,模型和可靠性更新,尤其是复杂的动态系统 ud,它可能具有高维不确定性,这是一个非常具有挑战性的问题。在这里,由于其具有表征与基础系统相关联的建模/不确定性的能力以及基于概率概率公理的专有基础,因此采用完整的贝叶斯模型更新方法为这些应用程序提供了一个健壮和严格的框架。首先,考虑在随机系统模型类中可能具有高维不确定性的复杂系统的模型更新。为了解决具有挑战性的计算难题,提出了对问题复杂性可靠且鲁棒的随机仿真方法。研究了混合蒙特卡罗方法,并证明了该方法如何用于解决涉及高维不确定性的复杂动态系统的贝叶斯模型更新问题。推导了 udMarkov链收敛性评估的新公式。最后还介绍了先进的混合马尔可夫链 udMonte Carlo模拟算法。 ud下一步,问题是如何从系统的一组竞争 udcandate模型类中选择最合理的模型类,以及如何从这些模型类中获得可靠的预测根据数据严格考虑 udmodel类。为了解决这个问题,可以使用贝叶斯 udmodel类的选择和平均,这是基于系统的不同候选类的后 udprobability。但是,这些需要基于系统数据来计算 、、 模型模型的证据 ud 多维类型积分,涉及模型类定义的似然和 udprior乘积。回顾了解决计算上的挑战性证据问题的方法,并提出了使用后验样本的新方法。 ud即使只有一个嵌入式不确定性模型,也可以创建多个随机模型类。这些模型类别可以看作是卡尔曼滤波中考虑的 u 随机模型的一般化,以包括 表征随机模型的参数中的不确定性。最先进的算法用于解决这些扩展的模型类所产生的难以解决的计算问题。贝叶斯 udmodel类选择用于评估扩展模型 udclasse和原始模型的后验概率,以进行基于数据的比较。还解决了计算不可靠的系统可靠性的问题。提出的方法的重要性和有效性以结构系统的可靠更新为例进行了说明。这项工作的另一个重要意义是,证明随机分析的结果(尤其是鲁棒的系统可靠性)对不确定性如何处理的敏感性,这在过去的研究中经常被忽略。 udA然后考虑模型验证问题。进行了一系列的实验,涉及从连续更复杂的子系统中收集数据,这些数据被用来预测相关的更复杂系统的响应。提出了一种基于贝叶斯更新的随机方法的分类方法,该方法基于随机实验的分类数据,用于不确定性量化和传播,模型验证和目标系统响应的鲁棒预测。最近开发的随机模拟方法用于解决所涉及的计算问题。 ud最后,使用 udcurrent系统数据开发了一种基于随机仿真方法的新方法,以更新动态系统的鲁棒性故障概率,该概率将受到未来不确定的动态激励的影响。另一个有趣的问题是,基于对系统某些输出的实时测量(有或没有相应的输入数据), ud计算动态系统受到动态激励时的鲁棒故障概率。并允许建模不确定性;这将卡尔曼滤波推广到不确定的非线性动力系统。为此,基于随机仿真方法引入了一种新颖的方法,以对非线性动态系统的可靠性进行更新,如果可以足够快地执行计算,则可以实时更新。

著录项

  • 作者

    Cheung Sai Hung;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号