首页> 外文OA文献 >Zwitterionic and Cationic Bis(phosphine) Platinum(II) Complexes:  Structural, Electronic, and Mechanistic Comparisons Relevant to Ligand Exchange and Benzene C−H Activation Processes
【2h】

Zwitterionic and Cationic Bis(phosphine) Platinum(II) Complexes:  Structural, Electronic, and Mechanistic Comparisons Relevant to Ligand Exchange and Benzene C−H Activation Processes

机译:两性离子和阳离子双(膦)铂(II)配合物:与配体交换和苯CH活化过程相关的结构,电子和机理比较

摘要

Structurally similar but charge-differentiated platinum complexes have been prepared using the bidentate phosphine ligands [Ph_(2)B(CH_(2)PPh_(2))_(2)], ([Ph_(2)BP_(2)], [1]), Ph_(2)Si(CH_(2)PPh_(2))_(2), (Ph_(2)SiP_(2), 2), and H_(2)C(CH_(2)PPh_(2))_(2), (dppp, 3). The relative electronic impact of each ligand with respect to a coordinated metal center's electron-richness has been examined using comparative molybdenum and platinum model carbonyl and alkyl complexes. Complexes supported by anionic [1] are shown to be more electron-rich than those supported by 2 and 3. A study of the temperature and THF dependence of the rate of THF self-exchange between neutral, formally zwitterionic [Ph_(2)BP_(2)]Pt(Me)(THF) (13) and its cationic relative [(Ph_(2)SiP_(2))Pt(Me)(THF)][B(C_(6)F_(5))_(4)] (14) demonstrates that different exchange mechanisms are operative for the two systems. Whereas cationic 14 displays THF-dependent, associative THF exchange in benzene, the mechanism of THF exchange for neutral 13 appears to be a THF independent, ligand-assisted process involving an anchimeric, η3-binding mode of the [Ph_(2)BP_(2)] ligand. The methyl solvento species 13, 14, and [(dppp)Pt(Me)(THF)][B(C_(6)F_(5))_(4)] (15), each undergo a C−H bond activation reaction with benzene that generates their corresponding phenyl solvento complexes [Ph_(2)BP_(2)]Pt(Ph)(THF) (16), [(Ph_(2)SiP_(2))Pt(Ph)(THF)][B(C_(6)F_(5))_(4)] (17), and [(dppp)Pt(Ph)(THF)][B(C_(6)F_(5))_(4)] (18). Examination of the kinetics of each C−H bond activation process shows that neutral 13 reacts faster than both of the cations 14 and 15. The magnitude of the primary kinetic isotope effect measured for the neutral versus the cationic systems also differs markedly (k(C6H6)/k(C6D6):  13 = 1.26; 14 = 6.52; 15 6). THF inhibits the rate of the thermolysis reaction in all three cases. Extended thermolysis of 17 and 18 results in an aryl coupling process that produces the dicationic, biphenyl-bridged platinum dimers [{(Ph_(2)SiP_(2))Pt}2(μ-η3:η3-biphenyl)][B(C6F5)4]2 (19) and [{(dppp)Pt}2(μ-η^(3):η^(3)-biphenyl)][B(C_(6)F_(5))_(4)]_(2) (20). Extended thermolysis of neutral [Ph_(2)BP_(2)]Pt(Ph)(THF) (16) results primarily in a disproportionation into the complex molecular salt {[Ph_(2)BP_(2)]PtPh_(2)}-{[Ph_(2)BP_(2)]Pt(THF)_(2)}+. The bulky phosphine adducts [Ph_(2)BP_(2)]Pt(Me){P(C_(6)F_(5))_(3)} (25) and [(Ph_(2)SiP_(2))Pt(Me){P(C_(6)F_(5))_(3)}][B(C_(6)F_(5))_(4)] (29) also undergo thermolysis in benzene to produce their respective phenyl complexes, but at a much slower rate than for 13−15. Inspection of the methane byproducts from thermolysis of 13, 14, 15, 25, and 29 in benzene-d6 shows only CH_(4) and CH3D. Whereas CH_(3)D is the dominant byproduct for 14, 15, 25, and 29, CH_(4) is the dominant byproduct for 13. Solution NMR data obtained for 13, its 13C-labeled derivative [Ph_(2)BP_(2)]Pt(^(13)CH_(3))(THF) (13-^(13)CH_(3)), and its deuterium-labeled derivative [Ph_(2)B(CH_(2)P(C_(6)D5)_(2))_(2)]Pt(Me)(THF) (13-d20), establish that reversible [Ph_(2)BP_(2)]-metalation processes are operative in benzene solution. Comparison of the rate of first-order decay of 13 versus the decay of d_(20)-labeled 13-d_(20) in benzene-d_(6) affords k_(13)/k_(13-d20) ~ 3. The NMR data obtained for 13, 13-^(13)CH_3, and 13-d_20 suggest that ligand metalation processes involve both the diphenylborate and the arylphosphine positions of the [Ph_(2)BP_(2)] auxiliary. The former type leads to a moderately stable and spectroscopically detectable platinum(IV) intermediate. All of these data provide a mechanistic outline of the benzene solution chemistries for the zwitterionic and the cationic systems that highlights their key similarities and differences.
机译:使用双齿膦配体[Ph_(2)B(CH_(2)PPh_(2))_(2),([Ph_(2)BP_(2)], [1]),Ph_(2)Si(CH_(2)PPh_(2))_(2),(Ph_(2)SiP_(2),2)和H_(2)C(CH_(2)PPh_ (2))_(2),(dppp,3)。已经使用比较的钼和铂模型的羰基和烷基络合物检查了每个配体相对于配位金属中心的电子富集的相对电子影响。阴离子[1]所支持的配合物比2和3所支持的配合物更富电子。研究温度和THF对中性,正式两性离子[Ph_(2)BP_之间的THF自交换速率的依赖性。 (2)] Pt(Me)(THF)(13)及其阳离子相对值[(Ph_(2)SiP_(2))Pt(Me)(THF)] [B(C_(6)F_(5))_ (4)](14)证明了两种系统使用不同的交换机制。阳离子14在苯中显示THF依赖性的缔合THF交换,而中性13的THF交换机制似乎是不依赖THF的配体辅助过程,涉及[Ph_(2)BP_( 2)]配体。甲基溶剂13、14和[(dppp)Pt(Me)(THF)] [B(C_(6)F_(5))_(4)](15)各自进行CH键活化与苯反应生成相应的苯基溶剂络合物[Ph_(2)BP_(2)] Pt(Ph)(THF)(16),[(Ph_(2)SiP_(2))Pt(Ph)(THF)] [B(C_(6)F_(5))_(4)](17)和[(dppp)Pt(Ph)(THF)] [B(C_(6)F_(5))_(4) ](18)。对每个CH键活化过程的动力学研究表明,中性13的反应比阳离子14和15都快。对于中性与阳离子体系测得的主要动力学同位素效应的幅度也显着不同(k(C6H6 )/ k(C6D6):13 = 1.26; 14 = 6.52; 15 6)。在所有三种情况下,THF均会抑制热分解反应的速度。 17和18的扩展热解导致芳基偶联过程,该过程会生成双键桥联的双键铂二聚体[[((Ph_(2)SiP_(2))Pt} 2(μ-η3:η3-联苯)] [B( C6F5)4] 2(19)和[{(dppp)Pt} 2(μ-η^(3):η^(3)-联苯)] [B(C_(6)F_(5))_(4 )] _(2)(20)。中性[Ph_(2)BP_(2)] Pt(Ph)(THF)的扩展热解(16)主要导致歧化成复杂分子盐{[Ph_(2)BP_(2)] PtPh_(2)} -{[Ph_(2)BP_(2)] Pt(THF)_(2)} +。庞大的膦加合物[Ph_(2)BP_(2)] Pt(Me){P(C_(6)F_(5))_(3)}(25)和[(Ph_(2)SiP_(2)) Pt(Me){P(C_(6)F_(5))_(3)}] [B(C_(6)F_(5))_(4)](29)也在苯中进行热分解以生成它们的各自的苯基配合物,但速度比13-15慢得多。检查苯-d6中13、14、15、25和29的热分解产生的甲烷副产物,仅显示CH_(4)和CH3D。 CH_(3)D是14、15、25和29的主要副产物,CH_(4)是13的主要副产物。13的溶液NMR数据是由13C标记的衍生物[Ph_(2)BP_( 2)] Pt(^(13)CH_(3))(THF)(13-^(13)CH_(3))及其氘标记的衍生物[Ph_(2)B(CH_(2)P(C_ (6)D5)_(2))_(2)] Pt(Me)(THF)(13-d20),证明可逆的[Ph_(2)BP_(2)]-金属化过程在苯溶液中有效。比较苯的d_(6)中13的一阶衰减速率与d_(20)标记的13-d_(20)衰减速率的比较,得出k_(13)/ k_(13-d20)〜3。从13、13-^(13)CH_3和13-d_20获得的NMR数据表明,配体金属化过程涉及[Ph_(2)BP_(2)]助剂的二苯基硼酸酯和芳基膦位置。前一种类型导致中等稳定且在光谱上可检测的铂(IV)中间体。所有这些数据为两性离子和阳离子体系的苯溶液化学机理提供了机理概述,突出了它们的关键相似点和不同点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号