首页> 外文OA文献 >Internal‐Rotation in Hydrogen Peroxide: The Far‐Infrared Spectrum and the Determination of the Hindering Potential
【2h】

Internal‐Rotation in Hydrogen Peroxide: The Far‐Infrared Spectrum and the Determination of the Hindering Potential

机译:过氧化氢中的内部旋转:远红外光谱和妨碍潜力的测定

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The torsional oscillation between the two OH groups of the hydrogen peroxide molecule is investigated through a study of the far‐infrared absorption spectrum of the molecule. A 1‐m‐focal‐length vacuum grating monochromator was used to scan the region from 15 to 700 cm−1 with an average resolution of 0.3 cm−1. The observed spectrum contains seven perpendicular‐type bands of which only the Q branches are resolved. The centers of the seven bands are at 11.43, 116.51, 198.57, 242.76, 370.70, 521.68, and 557.84 cm−1. These bands result from transitions between different states of the internal rotation and their identification makes it possible to construct the internal‐rotation energy level scheme through the first five excited states. Relative to the torsional ground state, these levels occur at 11.43, 254.2, 370.7, 569.3, and 775.9 cm−1.A theory of internal rotation in the hydrogen peroxide molecule is developed for use in the analysis of the far‐infrared spectra. In this theory, the Hamiltonian is constructed assuming all structural distances and angles fixed except the dihedral angle x defining the relative position of the two OH bars. By the use of a contact transformation the Hamiltonian is put in the form H (asymmetric top)+H(internal rotation) where the interaction between the internal and over‐all rotations arises through the x dependence of the inertial parameters of H(asymmetric top). It is assumed that the relative position of the two OH bars is governed by a potential‐energy function of the form V(x) = V1cosx+V2cos2x+V3cos3xV(x)=V1cosx+V2cos2x+V3cos3x. The internal‐rotation wave equation [αpx2+V(x)]M(x) = EM(x)[αpx2+V(x)]M(x)=EM(x) is solved numerically by an electronic‐computer and the potential function parameters V1=993 cm−1, V2=636 cm−1, and V3=44 cm−1 are chosen to fit the internal‐rotation energy‐level scheme. The trans and cis potential barrier heights are 386 and 2460 cm−1, respectively, and the potential‐function minima are located 111.5° from the cis configuration. Diagonalization of the matrix of the complete Hamiltonian to second order by the use of perturbation theory is sufficient to account for the observed Q‐branch shapes in the far infrared region.Two microwave frequencies observed by Massey and Bianco at 22 054.5 and 27 639.6 Mc/sec are identified from their Stark effects as the first excited‐state transitions J, K, n, τ=8, 6, 1, 1→7, 5, 1, 3 and J, K, n, τ=8, 5, 1, 3→9, 6, 1, 1, respectively, where the internal‐rotation quantum number n=1 denotes the first excited torsional state and where τ denotes trans symmetric (τ=1 and 2) or antisymmetric (τ=3 and 4) states. The form of the dipole moment operator is assumed to be μ0 cos(x/2) and μ0 is found to be 3.15 D in agreement with the value obtained from the torsional ground‐state transitions.Two J=0 microwave series observed by Massey, Beard, and Jen in a mixed sample of the deuterated species D2O2 and HOOD give confirmation of the potential function determined from the H2O2 analysis. The K=4→5 series is identified as the D2O2 first excited torsional state transition n=1→1, τ=4→2. The K=0→1 series is identified as the HOOD torsional ground‐state transition n=0→0, τ=4→2. Only very small changes in the trans barrier height are necessary to fit the constant terms of these series exactly. These changes, which are expected to arise from vibration‐internal rotation interactions, show a reasonable progression from H2O2 to D2O2: V (trans, HOOH) = 386 cm−1, V (trans, HOOD) = 381 cm−1 and V (trans, DOOD) = 378 cm−1.
机译:通过研究分子的远红外吸收光谱研究过氧化氢分子的两个OH基团之间的扭转振荡。使用1-M-焦距真空光栅单色仪扫描15至700cm-1的区域,平均分辨率为0.3cm-1。观察到的频谱包含七个垂直型频带,其中仅解决Q分支。七个频段的中心位于11.43,116.51,198.57,242.76,370.70,521.68和557.84 cm-1。这些频带由内部旋转的不同状态之间的转变产生,并且它们的识别使得可以通过前五个激发状态构造内部旋转能级方案。相对于扭转地位,这些水平发生在11.43,254.2,370.7,569.3和775.9cm-1.a中,在过氧化氢分子中开发的内部旋转理论,用于分析远红外光谱。在本文中,假设除了定义两个OH条的相对位置之外的所有结构距离和角度固定的所有结构距离和角度,构造哈密顿。通过使用接触变换,将汉密尔顿人放入H(非对称顶部)+ h(内部旋转)的形式,其中内部和全旋转之间的相互作用通过H的惯性参数的X(非对称顶部)。假设两个OH条的相对位置由v(x)= V1cosx + V2COS2x + V3COSX + V2COS2X + V3COS3X的势能函数的潜在 - 能量函数控制。内部旋转波方程[αpx2+ v(x)] m(x)= em(x)[αpx2+ v(x)] m(x)= em(x)通过电子计算机和em(x)解决选择潜在功能参数V1 = 993cm-1,v2 = 636cm-1和V3 = 44cm-1以适合内部旋转能级方案。 Trans和CIS潜在屏障高度分别为386和2460cm-1,电位函数最小值位于CIS配置111.5°。通过使用扰动理论,完整的Hamiltonian的矩阵对二阶的矩阵足以考虑观察到的远红外区域中的观察到的Q分支形状。由Massey和Bianco观察到的WO微波频率在22 054.5和27 639.6 MC /将SEC从其迹象效应中识别,作为第一激发状态转换j,k,n,τ= 8,6,1,1→7,5,1,3和j,k,n,τ= 8,5,分别为1,3→9,6,1,1,其中内旋量子数n = 1表示第一激发扭转状态,其中τ表示反对对称(τ= 1和2)或反对称(τ= 3和4)州。偶极力矩操作员的形式被假设为μ0cos(x / 2),并且发现μ0是3.15d,与从扭转地面转换所获得的值。j = 0由massey观察到的微波系列,胡子,jen在氘代物种D2O2和罩的混合样品中给出了从H2O2分析中确定的潜在功能的确认。 k = 4→5系列被识别为D2O2第一激发扭转状态转换n = 1→1,τ= 4→2。 k = 0→1系列被识别为罩扭转地面转换n = 0→0,τ= 4→2。只有反式屏障高度的唯一变化是必要的,以确切地符合这些系列的常数条款。这些变化,预计从振动内部旋转的相互作用来产生,显示出合理的级数从H 2 O 2到D2O2:V(反式,HOOH)=386厘米-1,V(反式,HOOD)=381厘米-1和V( Trans,Dood)= 378 cm-1。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号