首页> 外文OA文献 >Regarding Solid Oxide Fuel Cells Simulation through Artificial Intelligence: A Neural Networks Application
【2h】

Regarding Solid Oxide Fuel Cells Simulation through Artificial Intelligence: A Neural Networks Application

机译:关于通过人工智能的固体氧化物燃料电池模拟:神经网络应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Because of their fuel flexibility, Solid Oxide Fuel Cells (SOFCs) are promising candidates to coach the energy transition. Yet, SOFC performance are markedly affected by fuel composition and operative parameters. In order to optimize SOFC operation and to provide a prompt regulation, reliable performance simulation tools are required. Given the high variability ascribed to the fuel in the wide range of SOFC applications and the high non-linearity of electrochemical systems, the implementation of artificial intelligence techniques, like Artificial Neural Networks (ANNs), is sound. In this paper, several network architectures based on a feedforward-backpropagation algorithm are proposed and trained on experimental data-set issued from tests on commercial NiYSZ/8YSZ/LSCF anode supported planar button cells. The best simulator obtained is a 3-hidden layer ANN (25/22/18 neurons per layer, hyperbolic tangent sigmoid as transfer function, obtained with a gradient descent with adaptive learning rate backpropagation). This shows high accuracy (RMS = 0.67% in the testing phase) and successful application in the forecast of SOFC polarization behaviour in two additional experiments (RMS in the order of 3% is scored, yet it is reduced to about 2% if only the typical operating current density range of real application is considered, from 300 to 500 mA·cm−2). Therefore, the neural tool is suitable for system simulation codes/software whether SOFC operating parameters agree with the input ranges (anode feeding composition 0–48%vol H2, 0–38%vol CO, 0–45%vol CH4, 9–32%vol CO2, 0–54%vol N2, specific equivalent hydrogen flow-rate per unit cell active area 10.8–23.6 mL·min−1·cm−2, current density 0–1300 mA·cm−2 and temperature 700–800 °C).
机译:由于它们的燃料柔韧性,固体氧化物燃料电池(SOFC)是有前途的候选人,以指导能量转变。然而,SOFC性能明显受燃料组合物和手术参数的影响。为了优化SOFC操作并提供迅速的调节,需要可靠的性能仿真工具。鉴于高可变性冲高燃料的广泛应用固体氧化物燃料电池和电化学系统的高非线性,人工智能技术的实现,如人工神经网络(人工神经网络),是健全的。在本文中,提出了基于前馈 - 反向算法的若干网络架构,并在商业NiySZ / 8YSZ / LSCF阳极上的测试中发出的实验数据集上培训。获得的最佳模拟器是一个3隐藏的层子(每层25 / 22/18神经元,双曲线切线作为传递函数,用自适应学习速率反向计算获得的梯度下降)。这显示出高精度(RMS = 0.67%在测试阶段),并且在两种附加实验中的SOFC偏振行为预测中的成功应用(得分为3%的RMS,但如果只有约2%考虑典型的工作电流密度范围,从300到500 mA·cm-2)。因此,神经工具适用于系统仿真码/软件,无论是SOFC操作参数是否与输入范围一致(阳极馈电组合物0-48%Vol H 2,0-38%Vol CO,0-45%Vol CH4,9-32 %Vol CO2,0-54%Vol N2,单位细胞的特定等效氢流速10.8-23.6ml·min-1·cm-2,电流密度0-1300 mA·cm-2和温度700-800 °C)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号