首页> 外文OA文献 >3D Segmentation of Perivascular Spaces on T1-Weighted 3 Tesla MR Images With a Convolutional Autoencoder and a U-Shaped Neural Network
【2h】

3D Segmentation of Perivascular Spaces on T1-Weighted 3 Tesla MR Images With a Convolutional Autoencoder and a U-Shaped Neural Network

机译:用卷积自动化器和U形神经网络对T1加权3特斯拉MR图像上的羽毛状空间的三维分割

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We implemented a deep learning (DL) algorithm for the 3-dimensional segmentation of perivascular spaces (PVSs) in deep white matter (DWM) and basal ganglia (BG). This algorithm is based on an autoencoder and a U-shaped network (U-net), and was trained and tested using T1-weighted magnetic resonance imaging (MRI) data from a large database of 1,832 healthy young adults. An important feature of this approach is the ability to learn from relatively sparse data, which gives the present algorithm a major advantage over other DL algorithms. Here, we trained the algorithm with 40 T1-weighted MRI datasets in which all “visible” PVSs were manually annotated by an experienced operator. After learning, performance was assessed using another set of 10 MRI scans from the same database in which PVSs were also traced by the same operator and were checked by consensus with another experienced operator. The Sorensen-Dice coefficients for PVS voxel detection in DWM (resp. BG) were 0.51 (resp. 0.66), and 0.64 (resp. 0.71) for PVS cluster detection (volume threshold of 0.5 within a range of 0 to 1). Dice values above 0.90 could be reached for detecting PVSs larger than 10 mm3 and 0.95 for PVSs larger than 15 mm3. We then applied the trained algorithm to the rest of the database (1,782 individuals). The individual PVS load provided by the algorithm showed a high agreement with a semi-quantitative visual rating done by an independent expert rater, both for DWM and for BG. Finally, we applied the trained algorithm to an age-matched sample from another MRI database acquired using a different scanner. We obtained a very similar distribution of PVS load, demonstrating the interoperability of this algorithm.
机译:我们在深白物质(DWM)和基底神经节(BG)中,为大脑空间(PVSS)的三维分割进行了深度学习(DL)算法。该算法基于AutoEncoder和U形网络(U-Net),并使用来自1,832名健康年轻成年人的大型数据库的T1加权磁共振成像(MRI)数据进行培训和测试。这种方法的一个重要特征是能够从相对稀疏的数据中学习,这给出了本算法在其他DL算法上具有主要优点。在这里,我们培训了具有40 T1加权MRI数据集的算法,其中所有“可见”PVSS由经验丰富的操作员手动注释。学习后,使用来自同一数据库的另一组10 MRI扫描评估性能,其中PVSS也被同一运营商追溯,并通过与另一个经验丰富的运营商的协商一致。用于PVS簇检测的PVS体素检测的PVS体素检测的蚀蚀剂骰子系数为0.51(RESP.0.66)和0.64(RESP.0.71)(在0到1的范围内0.5的体积阈值)。可以达到0.90高于0.90的骰子,用于检测大于10mm3和0.95的PVS,对于大于15mm3的PVS。然后,我们将培训的算法应用于数据库的其余部分(1,782个人)。由算法提供的个体PVS负载显示,通过独立专家评估者,DWM和BG的独立专家评估速度显示了高协议。最后,我们将训练算法从使用不同的扫描仪获取的另一个MRI数据库应用于年龄匹配的样本。我们获得了PVS负载非常相似的分布,展示了该算法的互操作性。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号