首页> 外文OA文献 >Intelligent Control Strategy for Transient Response of a Variable Geometry Turbocharger System Based on Deep Reinforcement Learning
【2h】

Intelligent Control Strategy for Transient Response of a Variable Geometry Turbocharger System Based on Deep Reinforcement Learning

机译:基于深增强学习的可变几何涡轮增压器系统瞬态响应智能控制策略

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Deep reinforcement learning (DRL) is an area of machine learning that combines a deep learning approach and reinforcement learning (RL). However, there seem to be few studies that analyze the latest DRL algorithms on real-world powertrain control problems. Meanwhile, the boost control of a variable geometry turbocharger (VGT)-equipped diesel engine is difficult mainly due to its strong coupling with an exhaust gas recirculation (EGR) system and large lag, resulting from time delay and hysteresis between the input and output dynamics of the engine’s gas exchange system. In this context, one of the latest model-free DRL algorithms, the deep deterministic policy gradient (DDPG) algorithm, was built in this paper to develop and finally form a strategy to track the target boost pressure under transient driving cycles. Using a fine-tuned proportion integration differentiation (PID) controller as a benchmark, the results show that the control performance based on the proposed DDPG algorithm can achieve a good transient control performance from scratch by autonomously learning the interaction with the environment, without relying on model supervision or complete environment models. In addition, the proposed strategy is able to adapt to the changing environment and hardware aging over time by adaptively tuning the algorithm in a self-learning manner on-line, making it attractive to real plant control problems whose system consistency may not be strictly guaranteed and whose environment may change over time.
机译:深度加强学习(DRL)是一个机器学习领域,结合了深度学习方法和加强学习(RL)。然而,似乎很少有研究,以分析现实世界动力总成控制问题的最新DRL算法。同时,变量几何涡轮增压器(VGT) - 精细柴油发动机的升压控制主要是由于其与废气再循环(EGR)系统的强耦合和大型滞后,由输入和输出动态之间的时间延迟和滞后产生发动机的气体交换系统。在此上下文中,在本文中建立了最新的无模型DRL算法,深度确定性政策梯度(DDPG)算法,以开发并最终形成轨道下瞬态驱动周期下的目标增强压力的策略。使用微调比例分化(PID)控制器作为基准,结果表明,基于所提出的DDPG算法的控制性能可以通过自主学习与环境的互动来实现良好的瞬态控制性能,而无需依赖模型监督或完整环境模型。此外,所提出的策略可以通过在线自适应调整算法在线自适应地调整算法,使算法适应变化的环境和硬件老化,使其对系统一致性可能无法严格保证的实际工厂控制问题有吸引力其环境可能会随着时间的推移而变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号