首页> 外文OA文献 >Experimental study on the precipitation of magnesite from thermally activated serpentine for CO2 sequestration
【2h】

Experimental study on the precipitation of magnesite from thermally activated serpentine for CO2 sequestration

机译:来自热活化蛇形菱形菱镁矿沉淀的CO2螯合试验研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mineral carbonation has the potential to store billions of tonnes of CO₂ safely and permanently. Enhancement of the kinetics of the formation of magnesium carbonate from magnesium-bearing silicate minerals has been the subject of numerous research studies. However, significant progress is yet to be achieved. This is, in part, due to a lack of understanding of the mechanism of the formation of magnesite in the presence of additives and under mineral carbonation conditions. In this work, an in-depth study was performed to investigate the precipitation of magnesium carbonate during single step high pressure, high temperature carbonation of thermally activated serpentine in an aqueous bicarbonate solution. Slurry samples were obtained throughout the duration of the carbonation experiments, enabling analysis of both the aqueous and solid compositions over time, providing insight into the reaction mechanism. Additionally, the effect of operating temperature on the formation of various magnesium carbonate species was examined. TGA-MS, in combination with XRD and SEM, confirmed the formation of hydromagnesite in the absence of carbon dioxide (CO₂) during the reactor heat up period, owing to a reaction with the sodium bicarbonate (NaHCO₃) carrier solution. Hydromagnesite was transformed to magnesite over time, with the rate of this phase transformation highly dependent on the reaction temperature. At 185 °C all hydromagnesite converted to magnesite in a few minutes whereas at 120 °C even after 90 min hydromagnesite remained in the reactor. PHREEQC thermodynamic software was used to assess the observed formation of carbonate species. The model prediction was consistent with the experimental results obtained in this work.
机译:矿物碳化有可能安全和永久地存储数十亿吨二氧化碳。增强含镁硅酸镁矿物质形成的动力学是众多研究研究的主题。但是,尚未实现重大进展。部分是由于在添加剂存在和矿物碳化条件下缺乏对形成菱镁矿的机制的理解。在这项工作中,进行了深入的研究,以研究单步高压,在碳酸氢盐水溶液中的热活化蛇形的高温碳酸盐中碳酸镁的沉淀。在整个碳酸化实验期间获得浆液样品,使得随着时间的推移,能够分析水性和固体组合物,提供对反应机制的洞察力。另外,检查了操作温度对各种碳酸镁物种形成的影响。 TGA-MS与XRD和SEM组合,确认在反应器加热期间在没有二氧化碳(CO 2)的情况下,由于与碳酸氢钠(NaHCO 6)载体溶液的反应,在没有二氧化碳(CO 2)的情况下,形成了氢霉石。随着时间的推移,将水质镁转化为菱镁矿,具有高度依赖于反应温度的该相变的速率。在185℃下,所有氢氨基物质在几分钟内转化为菱镁矿,而即使在90分钟后,在120℃下仍然在反应器中仍然在120℃下。 PhReeqc热力动力学软件用于评估观察到的碳酸盐物种形成。模型预测与在这项工作中获得的实验结果一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号