首页> 外文OA文献 >Improving the Predictions of Computational Models of Convection-Enhanced Drug Delivery by Accounting for Diffusion Non-gaussianity
【2h】

Improving the Predictions of Computational Models of Convection-Enhanced Drug Delivery by Accounting for Diffusion Non-gaussianity

机译:通过核算扩散非高斯的对流增强药物递送计算模型的预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Convection-enhanced delivery (CED) is an innovative method of drug delivery to the human brain, that bypasses the blood-brain barrier by injecting the drug directly into the brain. CED aims to target pathological tissue for central nervous system conditions such as Parkinson's and Huntington's disease, epilepsy, brain tumors, and ischemic stroke. Computational fluid dynamics models have been constructed to predict the drug distribution in CED, allowing clinicians advance planning of the procedure. These models require patient-specific information about the microstructure of the brain tissue, which can be collected non-invasively using magnetic resonance imaging (MRI) pre-infusion. Existing models employ the diffusion tensor, which represents Gaussian diffusion in brain tissue, to provide predictions for the drug concentration. However, those predictions are not always in agreement with experimental observations. In this work we present a novel computational fluid dynamics model for CED that does not use the diffusion tensor, but rather the diffusion probability that is experimentally measured through diffusion MRI, at an individual-participant level. Our model takes into account effects of the brain microstructure on the motion of drug molecules not taken into account in previous approaches, namely the restriction and hindrance that those molecules experience when moving in the brain tissue, and can improve the drug concentration predictions. The duration of the associated MRI protocol is 19 min, and therefore feasible for clinical populations. We first prove theoretically that the two models predict different drug distributions. Then, using in vivo high-resolution diffusion MRI data from a healthy participant, we derive and compare predictions using both models, in order to identify the impact of including the effects of restriction and hindrance. Including those effects results in different drug distributions, and the observed differences exhibit statistically significant correlations with measures of diffusion non-Gaussianity in brain tissue. The differences are more pronounced for infusion in white-matter areas of the brain. Using experimental results from the literature along with our simulation results, we show that the inclusion of the effects of diffusion non-Gaussianity in models of CED is necessary, if reliable predictions that can be used in the clinic are to be generated by CED models.
机译:对流增强输送(CED)是药物递送到人的大脑,通过直接注射药物进入脑绕过血 - 脑屏障的一种创新的方法。 CED旨在针对中枢神经系统疾病如帕金森病和亨廷顿氏病,癫痫,脑肿瘤,缺血性中风病理组织。计算流体力学模型已建造至预测CED药品流通,使程序的临床医生预先规划。这些模型需要有关脑组织的微观结构,其可被收集的非侵入性地使用磁共振成像(MRI)的患者特异性信息预输注。现有的模型采用扩散张量,其表示脑组织中的高斯扩散,以提供用于药物浓度的预测。然而,这些预测并非总是与实验观察一致。在这项工作中,我们提出了CED一种新颖的计算流体动力学模型不使用的扩散张量,而是通过实验通过扩散MRI测量,在单个参与者水平扩散概率。我们的模型考虑到药物分子运动的大脑组织的帐户效果不考虑以前的方法,即限制和障碍,这些分子经验,在脑组织中移动时,并能提高药物浓度的预测。相关联的MRI方案的持续时间为19分钟,因此,对于临床人群可行的。我们首先证明理论上,这两个模型的预测不同的药物分布。然后,使用从健康的参与者体内的高分辨率MRI扩散的数据,我们得出,比较使用这两种模型的预测,以确定包括限制和阻碍的作用的影响。包括不同的药物分布这些影响结果,并且所观察到的差异表现出与脑组织中的扩散非高斯的措施统计学显著相关性。的差异更明显在大脑的白质区输液。从我们的模拟结果一起文献使用的实验结果,我们表明,扩散非高斯的CED模型的影响列入是必要的,如果能在临床中使用的可靠预测是由CED模型生成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号