首页> 外文OA文献 >Sensor Networks for Aerospace Human-Machine Systems
【2h】

Sensor Networks for Aerospace Human-Machine Systems

机译:航空航天人机系统传感器网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Intelligent automation and trusted autonomy are being introduced in aerospace cyber-physical systems to support diverse tasks including data processing, decision-making, information sharing and mission execution. Due to the increasing level of integration/collaboration between humans and automation in these tasks, the operational performance of closed-loop human-machine systems can be enhanced when the machine monitors the operator’s cognitive states and adapts to them in order to maximise the effectiveness of the Human-Machine Interfaces and Interactions (HMI2). Technological developments have led to neurophysiological observations becoming a reliable methodology to evaluate the human operator’s states using a variety of wearable and remote sensors. The adoption of sensor networks can be seen as an evolution of this approach, as there are notable advantages if these sensors collect and exchange data in real-time, while their operation is controlled remotely and synchronised. This paper discusses recent advances in sensor networks for aerospace cyber-physical systems, focusing on Cognitive HMI2 (CHMI2) implementations. The key neurophysiological measurements used in this context and their relationship with the operator’s cognitive states are discussed. Suitable data analysis techniques based on machine learning and statistical inference are also presented, as these techniques allow processing both neurophysiological and operational data to obtain accurate cognitive state estimations. Lastly, to support the development of sensor networks for CHMI2 applications, the paper addresses the performance characterisation of various state-of-the-art sensors and the propagation of measurement uncertainties through a machine learning-based inference engine. Results show that a proper sensor selection and integration can support the implementation of effective human-machine systems for various challenging aerospace applications, including Air Traffic Management (ATM), commercial airliner Single-Pilot Operations (SIPO), one-to-many Unmanned Aircraft Systems (UAS), and space operations management.
机译:在航空航天网络系统中引入了智能自动化和可信自主权,以支持各种任务,包括数据处理,决策,信息共享和任务执行。由于人类和自动化之间的集成/协作水平增加,当机器监测操作员的认知状态并适应它们时,可以提高闭环人机系统的操作性能,以便最大化效果人机界面和相互作用(HMI2)。技术发展导致了神经生理观察成为一种可靠的方法,可以使用各种可穿戴和远程传感器来评估人类运营商的状态。通过传感器网络的采用可以被视为这种方法的演变,因为如果这些传感器实时收集和交换数据,则存在显着的优势,而他们的操作远程和同步。本文讨论了航空航天网络 - 物理系统的传感器网络的最新进展,专注于认知HMI2(CHMI2)实现。讨论了这种背景下使用的关键神经生理学测量和与运营商的认知状态的关系。还提出了基于机器学习和统计推断的合适的数据分析技术,因为这些技术允许处理神经生理和操作数据以获得准确的认知状态估计。最后,为了支持CHMI2应用的传感器网络的开发,纸张通过机器学习的推理引擎解决了各种最先进的传感器的性能表征和测量不确定性的传播。结果表明,适当的传感器选择和集成可以支持实施有效的人机系统,以实现各种具有挑战性的航空航天应用,包括空中交通管理(ATM),商业机票单一试点操作(SIPO),一对多无人驾驶飞机系统(UAS)和空间运营管理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号