首页> 外文OA文献 >Nighttime observation and chemistry of HOx in the Pearl River Delta and Beijing in summer 2006
【2h】

Nighttime observation and chemistry of HOx in the Pearl River Delta and Beijing in summer 2006

机译:2006年夏季珠江三角洲和北京夜间HOx的化学观测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Nighttime HO chemistry was investigated in two ground-based fieldcampaigns (PRIDE-PRD2006 and CAREBEIJING2006) in summer 2006 in China bycomparison of measured and modeled concentration data of OH and HO. Themeasurement sites were located in a rural environment in the Pearl RiverDelta (PRD) under urban influence and in a suburban area close to Beijing,respectively. In both locations, significant nighttime concentrations ofradicals were observed under conditions with high total OH reactivities ofabout 40–50 s in PRD and 25 s near Beijing. For OH, thenocturnal concentrations were within the range of (0.5–3) × 10 cm, implying a significant nighttimeoxidation rate of pollutants on the order of several ppb per hour. Themeasured nighttime concentration of HO was about(0.2–5) × 10 cm, containing a significant,model-estimated contribution from RO as an interference. A chemical boxmodel based on an established chemical mechanism is capable of reproducingthe measured nighttime values of the measured peroxy radicals and$k_{ext{OH}}$, but underestimates in both field campaigns the observed OHby about 1 order of magnitude. Sensitivity studies with the box modeldemonstrate that the OH discrepancy between measured and modeled nighttime OHcan be resolved, if an additional RO production process (about1 ppb h) and additional recycling (RO → HO → OH) with an efficiencyequivalent to 1 ppb NO is assumed. The additional recycling mechanismwas also needed to reproduce the OH observations at the same locations duringdaytime for conditions with NO mixing ratios below 1 ppb. This couldbe an indication that the same missing process operates at day and night. Inprinciple, the required primary RO source can be explained byozonolysis of terpenoids, which react faster with ozone than with OH in thenighttime atmosphere. However, the amount of these highly reactive biogenicvolatile organic compounds (VOCs) would require a strong local source, forwhich there is no direct evidence. A more likely explanation for anadditional RO source is the vertical downward transport ofradical reservoir species in the stable nocturnal boundary layer. Using asimplified one-dimensional two-box model, it can be shown that ground-basedNO emissions could generate a large vertical gradient causing a downward fluxof peroxy acetic nitrate (PAN) and peroxymethacryloyl nitrate (MPAN).The downward transport and the following thermal decomposition of thesecompounds can produce up to 0.3 ppb h radicals in theatmospheric layer near the ground. Although this rate is not sufficient toexplain the complete OH discrepancy, it indicates the potentially importantrole of vertical transport in the lower nighttime atmosphere.
机译:通过测量和模拟的OH和HO浓度数据,在2006年夏季对两个地面野外活动(PRIDE-PRD2006和CAREBEIJING2006)进行了夜间HO化学研究。测量地点分别位于受城市影响的珠江三角洲(PRD)的农村环境和靠近北京的郊区。在这两个地方,在珠三角地区大约40–50 s和北京附近25 s的总OH反应性很高的条件下,观察到夜间自由基的浓度很高。对于OH而言,其夜间浓度在(0.5-3)×10 cm范围内,这意味着污染物的夜间夜间氧化速率非常高,约为每小时几ppb。夜间测得的HO浓度约为(0.2-5)×10 cm,其中包含RO作为干扰的模型估算值。基于已建立的化学机制的化学盒模型能够再现所测得的过氧自由基和$ k_ {ext {OH}} $的夜间测量值,但在两次野战中都低估了所观测到的OH大约1个数量级。使用盒式模型进行的敏感性研究表明,如果假设额外的RO生产过程(约1 ppb h)和额外的回收利用(RO→HO→OH)(相当于NO的效率为1 ppb),则可以解决夜间和模拟夜间OH之间的OH差异。对于NO混合比低于1 ppb的条件,还需要使用额外的回收机制在白天的同一位置重现OH值。这可能表明同一丢失的过程在白天和晚上都起作用。原则上,所需的主要反渗透源可以通过萜类化合物的臭氧分解来解释,萜类化合物在夜间大气中与臭氧的反应比与羟基的反应更快。但是,这些高反应性的生物挥发性有机化合物(VOC)的量需要强大的本地来源,对此尚无直接证据。另一个反渗透源的更可能解释是在稳定的夜间边界层中自由基储层物质的垂直向下传输。使用简化的一维两箱模型,可以证明基于地面的NO排放会产生较大的垂直梯度,从而导致过氧乙酸硝酸盐(PAN)和过氧甲基丙烯酰硝酸盐(MPAN)的向下通量。这些化合物可以在接近地面的大气层中产生高达0.3 ppb h的自由基。尽管此速率不足以解释OH的完全差异,但它表明在较低的夜间大气中垂直传输的潜在重要作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号