首页> 外文OA文献 >3D Printing, Ink Casting and Micromachined Lamination (3D PICLμM): A Makerspace Approach to the Fabrication of Biological Microdevices
【2h】

3D Printing, Ink Casting and Micromachined Lamination (3D PICLμM): A Makerspace Approach to the Fabrication of Biological Microdevices

机译:3D打印,墨水铸造和微机械层压(3DPICLμm):制造生物微生物制造的制造方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present a novel benchtop-based microfabrication technology: 3D printing, ink casting, micromachined lamination (3D PICLμM) for rapid prototyping of lab-on-a-chip (LOC) and biological devices. The technology uses cost-effective, makerspace-type microfabrication processes, all of which are ideally suited for low resource settings, and utilizing a combination of these processes, we have demonstrated the following devices: (i) 2D microelectrode array (MEA) targeted at in vitro neural and cardiac electrophysiology, (ii) microneedle array targeted at drug delivery through a transdermal route and (iii) multi-layer microfluidic chip targeted at multiplexed assays for in vitro applications. The 3D printing process has been optimized for printing angle, temperature of the curing process and solvent polishing to address various biofunctional considerations of the three demonstrated devices. We have depicted that the 3D PICLμM process has the capability to fabricate 30 μm sized MEAs (average 1 kHz impedance of 140 kΩ with a double layer capacitance of 3 μF), robust and reliable microneedles having 30 μm radius of curvature and ~40 N mechanical fracture strength and microfluidic devices having 150 μm wide channels and 400 μm fluidic vias capable of fluid mixing and transmitted light microparticle visualization. We believe our 3D PICLμM is ideally suited for applications in areas such as electrophysiology, drug delivery, disease in a dish, organ on a chip, environmental monitoring, agricultural therapeutic delivery and genomic testing.
机译:我们提出了一个新颖的基于台式-微细加工技术:三维印刷中,油墨铸造,对于上实验室芯片(LOC)的快速原型设计和生物设备微加工层压(3DPICLμM)。该技术采用符合成本效益,makerspace型微细加工处理,所有这些都理想地适用于低资源设置,并利用这些方法的组合,我们已经证明了以下设备:(ⅰ)2D微电极阵列(MEA)针对体外神经和心脏电,(ⅱ)的微针阵列通过经皮途径和(iii)多层微流控芯片定位于多重测定对于体外应用针对药物递送。三维印刷工艺已用于印刷角度,固化过程的温度和溶剂抛光到地址三个证明装置的各种生物功能方面的考虑进行优化。我们已经示出的是,3DPICLμM方法具有以制造30微米大小的MEA(140千欧的平均1千赫阻抗与3μF的双层电容)的能力,健壮和可靠的微针具有曲率为30μm半径和〜为40N机械断裂强度,并具有150米微米宽的通道和能流体混合和透射光微粒的可视化为400μm通孔的流体的微流体装置。我们相信,我们的3DPICLμM在如电,药物递送,疾病在培养皿中,器官在一个芯片上,环境监测,农业的治疗交付和基因测试领域非常适合应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号