首页> 外文OA文献 >Analysis of ionospheric structure influences on residual ionospheric errors in GNSS radio occultation bending angles based on ray tracing simulations
【2h】

Analysis of ionospheric structure influences on residual ionospheric errors in GNSS radio occultation bending angles based on ray tracing simulations

机译:基于射线追踪模拟分析电离层结构对GNSS无线电掩星弯角中残留的电离层误差的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Global Navigation Satellite System (GNSS) radio occultation (RO) technique is widely used to observe the atmosphere for applications such as numerical weather prediction and global climate monitoring. The ionosphere is a major error source to RO at upper stratospheric altitudes and a linear dual-frequency bending angle correction is commonly used to remove the first-order ionospheric effect. However, the residual higher-order ionospheric error (RIE) can still be significant so that it needs to be further mitigated for high accuracy applications, especially from 30 km altitude upward where the RIE is most relevant compared to the decreasing magnitude of the atmospheric bending angle. In a previous study we quantified RIEs using an ensemble of about 700 quasi-realistic end-to-end simulated RO events, finding typical RIEs at the 0.1 to 0.5 μrad noise level, but were left with 26 exceptional events with anomalous RIEs at the 1 to 10 μrad level that remained unexplained. In this study, we focused on investigating the causes of the high RIE of these exceptional events, employing detailed along-raypath analyses of atmospheric and ionospheric refractivities, impact parameter changes, and bending angles and RIEs under asymmetric and symmetric ionospheric structures. We found that the main causes of the high RIEs are a combination of physics-based effects, where asymmetric ionospheric conditions play the primary role, more than the ionization level driven by solar activity, and technical ray tracer effects due to occasions of imperfect smoothness in ionospheric refractivity model derivatives. We also found that along-ray impact parameter variations of more than 10 to 20 m are well possible due to ionospheric asymmetries, and depending on prevailing horizontal refractivity gradients are positive or negative relative to the initial impact parameter at the GNSS transmitter. Furthermore, mesospheric RIEs are found generally higher than upper stratospheric ones, likely due to being closer in tangent point heights to the ionospheric E layer peaking near 105 km, which increases RIE vulnerability. In future we will further improve the along-ray modeling system to fully isolate technical from physics-based effects and to use it beyond this work for additional GNSS RO signal propagation studies.
机译:全球导航卫星系统(GNSS)无线电掩星(RO)技术被广泛用于观测大气,以进行数值天气预报和全球气候监测等应用。电离层是平流层较高海拔处反渗透的主要误差源,通常使用线性双频弯曲角校正来消除一阶电离层效应。但是,残留的高阶电离层误差(RIE)仍然很大,因此对于高精度应用,尤其是从30 km的海拔高度,与大气弯曲的减小幅度相比,RIE最相关的是,需要进一步减轻该误差角度。在先前的研究中,我们使用约700个准现实的端到端模拟RO事件的集合对RIE进行了量化,找到了噪声水平在0.1至0.5µrad的典型RIE,但在1处存在26个异常事件,异常RIE。达到10μμrad的水平,目前尚无法解释。在这项研究中,我们专注于调查这些异常事件发生的高RIE的原因,对大气和电离层折射率,冲击参数变化以及不对称和对称电离层结构下的弯曲角度和RIE进行了详细的沿射线路径分析。我们发现高RIE的主要原因是基于物理的效应的结合,其中不对称的电离层条件起着主要作用,而不是由太阳活动驱动的电离能级,以及由于不完美的光滑度而产生的技术射线示踪剂效应。电离层折射率模型导数。我们还发现,由于电离层的不对称性,沿射线的冲击参数变化很有可能超过10至20μm,并且取决于当前的水平折射率梯度,相对于GNSS发射器的初始冲击参数,该梯度为正或负。此外,发现中层RIE通常高于平流层上方的RIE,这可能是由于切线点高度接近电离层E层的峰值,接近105 layerkm,这增加了RIE的脆弱性。将来,我们将进一步改进沿射线建模系统,以完全隔离技术与基于物理的影响,并将其用于这项工作之外的其他GNSS RO信号传播研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号