首页> 外文OA文献 >A Surface Complexation Model of Alkaline-SmartWater Electrokinetic Interactions in Carbonates
【2h】

A Surface Complexation Model of Alkaline-SmartWater Electrokinetic Interactions in Carbonates

机译:碳酸盐碱 - 智能电动相互作用的表面络合模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Understanding the effect of injection water chemistry is becoming crucial, as it has been recently shown to have a major impact on oil recovery processes in carbonate formations. Various studies have concluded that surface charge alteration is the primary mechanism behind the observed change of wettability towards water-wet due to SmartWater injection in carbonates. Therefore, understanding the surface charges at brine/calcite and brine/crude oil interfaces becomes essential to optimize the injection water compositions for enhanced oil recovery (EOR) in carbonate formations. In this work, the physicochemical interactions of different brine recipes with and without alkali in carbonates are evaluated using Surface Complexation Model (SCM). First, the zeta-potential of brine/calcite and brine/crude oil interfaces are determined for Smart Water, NaCl, and Na2SO4 brines at fixed salinity. The high salinity seawater is also included to provide the baseline for comparison. Then, two types of Alkali (NaOH and Na2CO3) are added at 0.1 wt% concentration to the different brine recipes to verify their effects on the computed zeta-potential values in the SCM framework. The SCM results are compared with experimental data of zeta-potentials obtained with calcite in brine and crude oil in brine suspensions using the same brines and the two alkali concentrations. The SCM results follow the same trends observed in experimental data to reasonably match the zeta-potential values at the calcite/brine interface. Generally, the addition of alkaline drives the zeta-potentials towards more negative values. This trend towards negative zeta-potential is confirmed for the Smart Water recipe with the impact being more pronounced for Na2CO3 due to the presence of divalent anion carbonate (CO3)-2. Some discrepancy in the zeta-potential magnitude between the SCM results and experiments is observed at the brine/crude oil interface with the addition of alkali. This discrepancy can be attributed to neglecting the reaction of carboxylic acid groups in the crude oil with strong alkali as NaOH and Na2CO3. The novelty of this work is that it clearly validates the SCM results with experimental zeta-potential data to determine the physicochemical interaction of alkaline chemicals with SmartWater in carbonates. These modeling results provide new insights on defining optimal SmartWater compositions to synergize with alkaline chemicals to further improve oil recovery in carbonate reservoirs.
机译:了解注入水化学的作用变得至关重要,因为它最近已证明在碳酸盐岩地层对采油过程中产生了重大影响。各种研究已得出结论,表面电荷改变是后面的润湿性的朝向水湿由于SmartWater注入在碳酸酯所观察到的变化的主要机制。因此,了解在盐水/方解石和盐水洗涤表面电荷/原油接口变得必不可少,以优化在碳酸盐地层强化采油(EOR)的喷射水的组合物。在这项工作中,具有不同盐水配方的物理化学相互作用和没有碱碳酸盐使用表面络合模型(SCM)来评价。首先,盐水/方解石和盐水的ζ电位/原油接口在固定盐度智能水,氯化钠,和Na2SO4盐水确定。也包括在高盐度的海水,以提供比较基准。然后,两种类型的碱(氢氧化钠和碳酸钠)以0.1重量%的浓度被加入到不同的盐水配方来验证其对在SCM框架所计算的ζ电位值的效果。所述SCM结果与在使用同样的盐水和两种碱浓度盐水悬浮液用盐水方解石和原油得到的Z-电位的实验数据进行比较。所述SCM结果遵循在实验数据中观察到的方解石/盐水界面合理匹配ζ电位值的相同的趋势。通常,在加入碱性驱动器的Z-电位向更负的值。朝负ζ电位这一趋势确认了智能水配方与冲击而更加明显为碳酸钠由于二价阴离子时碳酸盐(CO 3)的存在下-2。在SCM结果和实验之间的ζ电位幅度一些差异在盐水/原油接口与加入碱是观察。这种差异可以归因于忽略羧酸基团的在原油与强碱如氢氧化钠和碳酸钠的反应。这项工作的新颖性在于,它清楚地证实与实验ζ电位数据的SCM结果来确定的碱性化学与SmartWater在碳酸盐的物理化学相互作用。这些模拟结果提供关于定义最佳SmartWater组合物与碱性化学增效进一步提高碳酸盐岩储层中的油回收的新见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号