首页> 外文OA文献 >RuO2 Nanorods as an Electrocatalyst for Proton Exchange Membrane Water Electrolysis
【2h】

RuO2 Nanorods as an Electrocatalyst for Proton Exchange Membrane Water Electrolysis

机译:RuO2纳米棒作为质子交换膜水电解的电催化剂

摘要

The desire for pure diatomic hydrogen gas, H2(g), has been on the rise since the concept of the hydrogen economy system was proposed back in 1970. The production of hydrogen has been extensively examined over 40 + years as the need to replace current fuel sources, hydrocarbons, has become more prevalent. Currently there are only two practical and renewable production methods of hydrogen; landfill gas and power to gas. This study focuses on the later method; using various renewable energy sources, such as photovoltaics, to provide off-peak energy to perform water electrolysis. Efficient electrolysis takes place in electrochemical cells which maximize performance efficiency with the use of noble metal electrocatalyst. Optimizing these electrocatalyst to be less material dependent, highly durable, and more efficient will support the implementation of power to gas electrolysis into the energy infrastructure.The main focus of this study is to explore RuO2 nanorods as a possible electrocatalyst for Proton Exchange Membrane (PEM) water electrolysis. A PEM electrolyzer cell has been constructed and fitted with a RuO2 nanorod decorated, mixed metal oxide (MMO) ribbon mesh anode catalyst structure. The current density-voltage characteristics were measured for the RuO2 nanorod electrocatalyst while under water feed operation. The electrocatalytic behavior was compared to that of ribbon mesh anode catalyst structures not decorated with RuO2 nanorods; one coated with a Ir/Ta MMO catalyst, the other was stripped of the MMO coating resulting in a Ti ribbon mesh anode. The results of these experiments show increased activity with the RuO2 nanorod electrocatalyst corresponding to a decrease in electrochemical overpotential. Through the collection of experimental data from various electrolyzer cell configurations, these overpotenials were able to be identified, resulting in categorical attributions of the enhanced catalytic behavior examined.
机译:自从1970年提出氢经济体系的概念以来,对纯双原子氢气H2(g)的需求就一直在上升。40多年来,人们对氢的产生进行了广泛的研究,因为它需要替换当前的氢气。碳氢化合物等燃料已变得越来越普遍。当前只有两种实用和可再生的氢气生产方法;垃圾填埋气和天然气发电。本研究着重于后一种方法。使用各种可再生能源(例如光伏)提供非高峰能源来进行水电解。在电化学电池中发生了有效的电解,通过使用贵金属电催化剂可以最大限度地提高工作效率。优化这些电催化剂以减少对材料的依赖,高度耐用和更高效将支持将气体电解的能量实施到能源基础设施中。 )水电解。已构建了PEM电解槽,并装有RuO2纳米棒装饰的混合金属氧化物(MMO)带状网状阳极催化剂结构。在给水操作下,测量了RuO2纳米棒电催化剂的电流密度-电压特性。将其电催化行为与未用RuO2纳米棒修饰的带状网状阳极催化剂结构进行了比较。一个涂覆有Ir / Ta MMO催化剂,另一个去除了MMO涂层,形成了Ti带状网状阳极。这些实验的结果表明,RuO2纳米棒电催化剂的活性增加,与电化学过电势的降低相对应。通过从各种电解池配置中收集实验数据,可以识别出这些过电位,从而确定了所检查的增强催化行为的归因。

著录项

  • 作者

    Smith Richard;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号