首页> 外文OA文献 >Direct-coupling of the photovoltaic array and PEM electrolyser in solar-hydrogen systems for remote area power supply
【2h】

Direct-coupling of the photovoltaic array and PEM electrolyser in solar-hydrogen systems for remote area power supply

机译:光伏阵列和pEm电解槽在太阳能 - 氢气系统中的直接耦合,用于远程区域供电

摘要

Renewable energy-hydrogen systems for remote area power supply (RAPS) constitute an early niche market for sustainable hydrogen energy. The primary objective of this research has been to investigate the possibility of direct coupling of a PV array to a proton exchange membrane (PEM) electrolyser by appropriate matching of the current-voltage characteristics of both the components. The degree to which optimal matching can be achieved by direct coupling has been studied both theoretically and experimentally. A procedure for matching the maximum power point output of a PV array with the PEM electrolyser load to maximise the energy transfer between them has been presented. The key element of the matching strategy proposed is to vary the series-parallel stacking of individual cells in both the PV array and the PEM electrolyser so that the characteristic current (I) -voltage (V) curves of both the components align as closely as possible. This procedure is applied to a case study of direct coupling a PV array comprising 75 W panels (BP275) to a PEM electrolyser bank assembled from 50 W PEM electrolyser stacks (h-tec StaXX7). It was estimated theoretically that the optimal PV-electrolyser combination would yield an energy transfer of over 94% of the theoretical maximum on annual basis. This combination also gave the lowest hydrogen production cost on a lifecycle basis. An experimental test of this theoretical result for direct coupling was conducted over a period of 728 hours, with an effective direct-coupling operational time of about 467 hours (omitting the hours of zero solar radiation). Close agreement between the theoretically predicted and actual energy transfer from the PV array to the electrolyser bank in this trial was found. The difference between theoretical and experimental hydrogen production was less then 1.2%. The overall solar-to-hydrogen energy conversion efficiency was found to be 7.8%. The electrolysers were characterised before and after the direct coupling experiment, and showed a small decline in Faraday efficiency and energy efficiency. But this decline was less than the uncertainties in the measured values, so that no firm conclusions about electrolyser degradation can be drawn at this stage. Another direct-coupling experiment, using a larger scale PV-electrolyser system, that is, a 2.4 kW PV array at RMIT connected to the 'Oreion Alpha 1' stand-alone 2 kW PEM electrolyser developed by the CSIRO Energy Technology, was also successfully conducted for a period of 1519 hours (with 941 hours of effective operational time of the electrolyser). Energy-efficient direct coupling of a PV array and electrolyser as examined in this thesis promises to improve the economic viability of solar-hydrogen systems for remote power supply since the costs of an electronic coupling system employing a maximum power point tracker (MPPT) and dc-to-dc converter (around US$ 700/ kW) are avoided.
机译:用于偏远地区供电(RAPS)的可再生能源-氢系统构成了可持续氢能的早期利基市场。这项研究的主要目的是通过适当匹配两个组件的电流-电压特性,研究将PV阵列直接耦合至质子交换膜(PEM)电解槽的可能性。在理论上和实验上都研究了通过直接耦合可以达到最佳匹配的程度。提出了一种使PV阵列的最大功率点输出与PEM电解器负载相匹配以最大化它们之间的能量传递的过程。提出的匹配策略的关键要素是改变PV阵列和PEM电解槽中单个电池的串联-并联堆叠,以使两个组件的特征电流(I)-电压(V)曲线尽可能紧密地对齐可能。该程序适用于将包含75 W面板(BP275)的PV阵列直接耦合到由50 W PEM电解槽(h-tec StaXX7)组装而成的PEM电解槽的案例研究。从理论上估计,最佳的PV-电解槽组合每年产生的能量转移将超过理论最大值的94%。这种组合还使生命周期内的制氢成本最低。在728小时内进行了该理论结果用于直接耦合的实验测试,有效的直接耦合操作时间约为467小时(省略了零太阳辐射的时间)。在该试验中,发现了从光伏阵列到电解槽的理论预测能量与实际能量转移之间的密切一致性。理论和实验制氢之间的差异小于1.2%。发现总的太阳能到氢能的转化效率为7.8%。电解槽在直接耦合实验之前和之后进行了表征,并且显示出法拉第效率和能量效率略有下降。但是这种下降小于测量值的不确定性,因此在此阶段无法得出关于电解槽降解的确切结论。另一项直接耦合实验也成功完成,该实验使用了较大规模的PV电解槽系统,即RMIT的2.4 kW PV阵列与CSIRO Energy Technology开发的“ Oreion Alpha 1”独立式2 kW PEM电解槽相连。进行1519小时(电解槽的有效运行时间为941小时)。本文研究的光伏阵列和电解槽的高效节能直接耦合有望改善用于远程供电的太阳能氢系统的经济可行性,因为采用最大功率点跟踪器(MPPT)和直流电的电子耦合系统的成本较高避免使用直流转直流转换器(约合700美元/千瓦)。

著录项

  • 作者

    Paul B;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号