首页> 外文OA文献 >An extended cohesive damage model for simulating crack propagation in fibre reinforced composies
【2h】

An extended cohesive damage model for simulating crack propagation in fibre reinforced composies

机译:模拟纤维增强复合材料裂纹扩展的扩展粘聚损伤模型

摘要

This thesis presents an extended cohesive damage model (ECDM) for simulating crack propagation in fibre reinforced composites. By embedding the cohesive zone model (CZM) into the eXtended Finite Element Method (XFEM)and eliminating the enriched degree of freedoms (DoFs), the ECDM defines the cohesive crack path in an implicit way in equilibrium equations and enables the local enrichments of approximation spaces without additional DoFs. The contribution from additional DoFs can be accounted via the DoFs elimination,which allows discontinuities to exist within a finite element rather than the element boundaries. To account for the evolution of cohesion before crack propagation, in this developed ECDM, a new equivalent damage variable with respect to strain field is introduced to avoid the appearance of enriched DoFs,and to substitute the conventional characterization in the approximation of displacement jump. This variable is achieved based on the energy dissipation during post-failure process to characterize the damage evolution. Therefore,the constant dissipation of fracture energy during failure process is guaranteed.Eliminating the enrichment by adopting a condensation technique, the ECDM is expected to provide significant superiority in computational efficiency when modelling crack propagation in materials.The performance of the present ECDM is demonstrated by the initial applications in simulation of crack propagation in homogeneous and heterogonous structures, which show that the developed ECDM works well when comparing to experiment work and XFEM analysis. Regarding the computational cost, the ECDM can ease the computational burden by more than 60% reduction in terms of CPU time without sacrificing numerical accuracy and robustness. The feasibility of the ECDM in capturing delamination migration within fibre reinforced laminated composites is verified. Good agreements with experimental work are obtained and the present model’s advantage in accuracy and numerical efficiency comparing to CZM based model is demonstrated.This work makes contribution to academic knowledge and technology translation by the following points: 1. It is the first time to theoretically derive the fully condensed equilibrium equations of the ECDM based on the framework of XFEM; 2. An equivalent damage variable with respect to strain field is introduced for characterizing the effects from enriched DoFs and cohesive traction, which avoids physical displacement jump in presenting strong discontinuities; 3. A significant improvement of computing efficiency in non-linear fracture analysis is achieved through eliminating the enriched DoFs required by XFEM; 4. The developed ECDM provides a highly efficient tool for academics and engineers in predicting detailed multicrack failure mechanism in engineering materials and structures; 5. The ECDM is developed using common computer language FORTRAN, which can be easily integrated into other FEM commercial packages.
机译:本文提出了一种扩展的内聚损伤模型(ECDM),用于模拟纤维增强复合材料的裂纹扩展。通过将内聚力区域模型(CZM)嵌入扩展有限元方法(XFEM)中并消除富集自由度(DoFs),ECDM在平衡方程中以隐式方式定义了内聚裂纹路径,并能够进行局部富集没有其他DoF的空间。可以通过消除DoF来计算来自其他DoF的贡献,这可以使不连续性存在于有限元素内而不是元素边界内。为了解决裂纹扩展前内聚力的演变,在这种发达的ECDM中,引入了一个新的关于应变场的等效损伤变量,以避免出现富集的自由度,并在位移跳跃的近似值中替代了常规特征。此变量是基于故障后过程中的能量耗散来实现的,以表征损伤的演变。因此,可以保证破坏过程中断裂能量的不断散发。通过采用冷凝技术消除浓缩,在对材料中的裂纹扩展进行建模时,预期ECDM在计算效率上将具有明显的优势。在均质和异质结构中裂纹扩展模拟中的最初应用,这表明与实验工作和XFEM分析相比,已开发的ECDM效果很好。关于计算成本,在不牺牲数值精度和鲁棒性的前提下,ECDM可以将CPU时间减少60%以上,从而减轻了计算负担。验证了ECDM在捕获纤维增强层压复合材料内分层迁移中的可行性。与实验工作取得了良好的一致性,证明了该模型与基于CZM的模型相比在准确性和数值效率上的优势。这项工作为以下方面的学术知识和技术翻译做出了贡献:1.这是理论上的第一次基于XFEM框架的ECDM的完全凝聚平衡方程; 2.引入了与应变场有关的等效损伤变量,以表征来自富自由度和内聚牵引力的影响,避免了由于出现强烈不连续性而导致的物理位移跳跃; 3.通过消除XFEM所需的丰富DoF,可以显着提高非线性断裂分析的计算效率; 4.开发的ECDM为学者和工程师提供了一种高效的工具,用于预测工程材料和结构中的详细多裂纹破坏机制; 5. ECDM使用通用计算机语言FORTRAN开发,可以轻松集成到其他FEM商业软件包中。

著录项

  • 作者

    Li Xiaole;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号