首页> 外文OA文献 >AuxAg1-x alloy seeds: A way to control growth, morphology and defect formation in Ge nanowires
【2h】

AuxAg1-x alloy seeds: A way to control growth, morphology and defect formation in Ge nanowires

机译:AuxAg1-x合金种子:一种控制Ge纳米线中生长,形态和缺陷形成的方法

摘要

Germanium (Ge) nanowires are of current research interest for high speed nanoelectronic devices due to the lower band gap and high carrier mobility compatible with high K-dielectrics and larger excitonic Bohr radius ensuing a more pronounced quantum confinement effect [1-6]. A general way for the growth of Ge nanowires is to use liquid or a solid growth promoters in a bottom-up approach which allow control of the aspect ratio, diameter, and structure of 1D crystals via external parameters, such as precursor feedstock, temperature, operating pressure, precursor flow rate etc [3, 7-11]. The Solid-phase seeding is preferred for more control processing of the nanomaterials and potential suppression of the unintentional incorporation of high dopant concentrations in semiconductor nanowires and unrequired compositional tailing of the seed-nanowire interface [2, 5, 9, 12]. There are therefore distinct features of the solid phase seeding mechanism that potentially offer opportunities for the controlled processing of nanomaterials with new physical properties. A superior control over the growth kinetics of nanowires could be achieved by controlling the inherent growth constraints instead of external parameters which always account for instrumental inaccuracy. The high dopant concentrations in semiconductor nanowires can result from unintentional incorporation of atoms from the metal seed material, as described for the Al catalyzed VLS growth of Si nanowires [13] which can in turn be depressed by solid-phase seeding. In addition, the creation of very sharp interfaces between group IV semiconductor segments has been achieved by solid seeds [14], whereas the traditionally used liquid Au particles often leads to compositional tailing of the interface [15] . Korgel et al. also described the superior size retention of metal seeds in a SFSS nanowire growth process, when compared to a SFLS process using Au colloids [12]. Here in this work we have used silver and alloy seed particle with different compositions to manipulate the growth of nanowires in sub-eutectic regime. The solid seeding approach also gives an opportunity to influence the crystallinity of the nanowires independent of the substrate. Taking advantage of the readily formation of stacking faults in metal nanoparticles, lamellar twins in nanowires could be formed.
机译:锗(Ge)纳米线具有较低的带隙和与高K电介质兼容的高载流子迁移率以及较大的激子玻尔半径,因而具有更显着的量子约束效应,因此在高速纳米电子器件方面具有当前研究兴趣[1-6]。 Ge纳米线生长的一般方法是以自下而上的方法使用液体或固体生长促进剂,该方法可以通过外部参数(例如前驱物原料,温度,温度等)控制一维晶体的长宽比,直径和结构。操作压力,前体流速等[3,7-11]。固相晶种对于纳米材料的更多控制处理以及半导体纳米线中无意掺入高掺杂剂浓度以及晶种-纳米线界面的不必要成分拖尾的潜在抑制是优选的[2、5、9、12]。因此,固相晶种机制的独特特征可能为具有新物理性质的纳米材料的受控加工提供潜在的机会。通过控制固有的生长约束,而不是总是解释仪器误差的外部参数,可以实现对纳米线生长动力学的出色控制。半导体纳米线中的高掺杂剂浓度可能是由于金属种子材料中原子的无意掺入所致,正如针对Al催化的Si纳米线的VLS生长所描述的那样[13],而后者又可以通过固相播种来抑制。另外,在第IV组半导体段之间创建非常尖锐的界面已通过固体晶种实现[14],而传统上使用的液态Au颗粒通常会导致界面的成分拖尾[15]。 Korgel等。还描述了与使用金胶体的SFLS工艺相比,SFSS纳米线生长工艺中金属种子的尺寸保留率更高[12]。在这项工作中,我们使用了具有不同成分的银和合金种子粒子来控制亚共晶状态下纳米线的生长。固体晶种方法还提供了一个机会,可以独立于基板而影响纳米线的结晶度。利用金属纳米粒子中容易形成的堆垛层错,可以在纳米线中形成层状孪晶。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号