首页> 外文OA文献 >Groundwater characterisation and disposal modelling for coal seam gas recovery
【2h】

Groundwater characterisation and disposal modelling for coal seam gas recovery

机译:煤层气开采的地下水特征与处置模型

摘要

Coal Seam Gas (CSG) is a form of natural gas (mainly methane) sorbed in underground coal deposits. Mining this gas involves drilling a well directly into an underground coal seam, and pumping out the water (CSG water) flowing through it. Presently, CSG is under exploration in New Zealand (NZ); however, there is concern about CSG water disposal in NZ mainly because of the controversy that this activity has generated in some basins in the United States (US). The first part of this thesis studies CSG water from a well in Maramarua (NZ) and compares it to water from US basins. The NZ CSG water from this well had high pH (7.8), alkalinity in the order of 360 mg/l as CaCO₃, high sodium (334 mg/l), bicarbonate (435 mg/l), and chloride (146 mg/l). These ions also occur in US CSG waters, and their concentrations follow the same trend - high sodium, bicarbonate, and chloride with low calcium, magnesium, and sulphate concentrations. Prior to this work, little detailed analyses of CSG water quality variability from a well had been carried out. A Factor Analysis of 33 Maramarua samples was conducted and revealed that about one third of the variations were due to sample degassing, which induced calcium carbonate precipitation - this was supported by experimental work (sample sparging) and geochemical modelling (MINTEQA2). This finding is important for CSG water management because, as calcium concentrations decrease, higher SAR values are generated, and this can cause problems if CSG waters are disposed on land. In the second part, this thesis assesses the potential environmental effects of disposing CSG waters in NZ by formulating management options and a simple wastewater treatment system. This was carried out by studying the ecological response (soils, plant, and aquatic life) resulting from CSG water disposal operations in the US, and by applying relevant salinity and sodicity guidelines to the interaction between soils and CSG waters from Maramarua. This work showed that similar problems are likely to occur in NZ if CSG water disposal takes place without proper controls. Such a study has never been carried out in a region before actual CSG development has taken place, so this work shows how to quantify the effects arising from CSG water disposal prior to full scale production. This can be particularly useful for CSG stakeholders wanting to develop this resource in other regions around the world. A simple treatment system using Ngakuru zeolites has proven effective in reducing the SAR of Maramarua CSG water. Laboratory results indicate that these zeolites work by exchanging sodium cations in the water by other cations contained within the zeolite structure but with slow ion exchange kinetics. The calculated sodium absorption capacity for these natural zeolites ranged from 11.3 meq/100g to 16.7 meq/100g (flow-through conditions without previous regeneration). In addition, these experiments showed that the ion exchange process is accompanied by some dissolution (sulphate, boron, TOC, sodium, calcium, magnesium, potassium and reactive silica), but mainly at the beginning of the treatment process. Nevertheless, using this system, 180 grams of zeolite material were used to treat an initial 1.83 litres of Maramarua CSG water thus reducing potential soil infiltration problems to nil. As more CSG water was treated, the zeolites kept reducing SAR values but at a lesser rate until 4.53 litres of CSG water had been treated. A step-by-step methodology to assess treatment design options for these materials has been developed and will aid future researchers and engineers. This thesis presents the first comprehensive study of CSG water management in NZ. It also presents an ion exchange treatment system using natural zeolites already available in NZ. In conclusion, the research finds that, whether through adequate management or active treatment, CSG waters can be safely disposed without creating major environmental problems, and can even be used in beneficial applications.
机译:煤层气(CSG)是吸附在地下煤层中的天然气(主要是甲烷)的一种形式。开采这种气体涉及直接在地下煤层中钻一口井,并抽出流经其中的水(CSG水)。目前,CSG正在新西兰(NZ)进行勘探;但是,人们对新西兰的CSG水处理感到担忧,主要是因为这种活动已在美国(美国)的某些流域引起争议。本文的第一部分研究了Maramarua(NZ)一口井中的CSG水,并将其与美国盆地中的水进行了比较。来自该井的NZ CSG水具有高pH(7.8),碱度(按CaCO 3计约为360 mg / l),高钠(334 mg / l),碳酸氢盐(435 mg / l)和氯化物(146 mg / l)。 )。这些离子也存在于美国CSG水中,其浓度遵循相同的趋势-高钠,碳酸氢根和氯离子,而钙,镁和硫酸盐的浓度低。在进行这项工作之前,很少对一口井的CSG水质变异进行详细分析。进行了33个Maramarua样品的因子分析,结果表明,大约有三分之一的变化是由于样品脱气引起的碳酸钙沉淀-实验工作(样品喷射)和地球化学模型(MINTEQA2)支持了这一点。这一发现对CSG水管理非常重要,因为随着钙浓度的降低,会产生更高的SAR值,如果将CSG水放置在陆地上,则会引起问题。在第二部分中,本文通过制定管理方案和简单的废水处理系统,评估了在新西兰处置CSG水的潜在环境影响。通过研究美国CSG水处理业务产生的生态响应(土壤,植物和水生生物),以及将相关的盐度和碱度准则应用于马拉马鲁瓦州的土壤和CSG水之间的相互作用来进行。这项工作表明,如果在没有适当控制的情况下进行CSG水处理,则在新西兰也可能发生类似的问题。在实际的CSG开发之前,从未在某个地区进行过这样的研究,因此这项工作表明了如何在大规模生产之前量化CSG水处理产生的影响。对于希望在世界其他地区开发此资源的CSG利益相关者而言,这尤其有用。事实证明,使用Ngakuru沸石的简单处理系统可有效降低Maramarua CSG水的SAR。实验结果表明,这些沸石通过与沸石结构中包含的其他阳离子交换水中的钠阳离子而起作用,但离子交换动力学较慢。这些天然沸石的计算钠吸收容量为11.3meq / 100g至16.7meq / 100g(流通条件,未事先再生)。另外,这些实验表明,离子交换过程伴随着一些溶解(硫酸盐,硼,TOC,钠,钙,镁,钾和反应性二氧化硅),但主要是在处理过程开始时。然而,使用该系统,使用了180克沸石材料来处理初始的1.83升Maramarua CSG水,从而将潜在的土壤渗透问题减少到零。随着更多CSG水的处理,沸石一直在降低SAR值,但速率较低,直到处理了4.53升CSG水为止。已经开发出一种分步方法来评估这些材料的治疗设计方案,这将有助于未来的研究人员和工程师。本文是对新西兰CSG水管理的首次全面研究。它还介绍了一种使用新西兰已有的天然沸石的离子交换处理系统。总之,研究发现,无论是通过适当的管理还是积极的处理,CSG水都可以安全地处置,而不会造成重大的环境问题,甚至可以用于有益的应用。

著录项

  • 作者

    Taulis Mauricio;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号