首页> 外文OA文献 >The effects of Fe(III) reduction on biodegradation of fuel oxygenates and chlorinated ethenes
【2h】

The effects of Fe(III) reduction on biodegradation of fuel oxygenates and chlorinated ethenes

机译:Fe(III)还原对燃料含氧化合物和氯化乙烯的生物降解的影响

摘要

Fuel oxygenates, methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA), and chlorinated ethenes (TCE, cis-DCE and VC) are two groups of contaminants prevalent in groundwater systems. Fe(III) reducing conditions are dominant in many sedimentary environments. However, the effects of Fe(III) reduction on biotransformation of MTBE/TBA and chlorinated ethenes are not well understood. This research investigated the biodegradation of these contaminants and related microbial ecology under Fe(III)-reducing conditions in both sediment microcosms and enrichment cultures.The primary limitation to understanding anaerobic MTBE biodegradation is the lack of liquid cultures with consistent activity. This study enriched three distinct MTBE-degrading, anaerobic cultures from contaminated aquifer material, and they use anthraquinone-2,6-disulfonate, sulfate and fumarate as the terminal electron acceptor, respectively. Phylogenetic analyses based on 16S rRNA gene suggested novel microorganisms involved in anaerobic MTBE biodegradation. These cultures are the first stable, sediment-free anaerobic MTBE-degrading cultures, which provide model systems for mechanistic studies of anaerobic MTBE biodegradation. Substantial [U-14C]-TBA mineralization occurred under Fe(III)-reducing conditions. The TBA biodegradation activity was correlated with the abundance of one dominant clone, which is closely associated with organisms belonging to the Alphaproteobacteria. The results provide the original evidence of the stimulative effect of Fe(III) reduction on anaerobic TBA mineralization, and give initial insight to the organisms that may catalyze the anaerobic TBA mineralization reactions.The experimental study on the effects of Fe(III) reduction on reductive dechlorination demonstrated that Fe(III) reduction did not inhibit complete dechlorination, which is in contrast to the common opinion that TCE dechlorination will be inhibited wherever there is bioavailable Fe(III). Fe(III) speciation has an impact on daughter product distribution and dechlorination kinetics. Quantitative PCR analysis revealed that Dehalococcoides and Geobacteraceae organisms were enriched concurrently in the dechlorinating Fe(III)-reducing sediments/cultures; Dehalococcoides abundance in the presence of Fe(III) was not significantly different from that in the cultures without Fe(III), meaning Fe(III) reducers would not outcompete and inhibit Dehalococcoides growth. Also, Fe(III) reduction may stimulate growth of G. lovleyi like organisms and contribute to TCE dechlorination to cis-DCE. Enrichment culture study demonstrated that Fe(III) reduction poised the hydrogen concentration at an appropriate steady-state that is within the ideal range for reductive dechlorination when acetate was amended as the sole electron donor. 10X excessive electron donor addition did not facilitate chlorinated ethene dechlorination, but led to considerably high methane production and enrichment of methanogens. The results suggest that adding surplus electron donor will not only cause substrate wastage and unnecessary cost in bioremediation, but also have adverse effects such as enhanced methane release.
机译:含氧燃料,甲基叔丁基醚(MTBE)和叔丁醇(TBA)以及氯化乙烯(TCE,顺式DCE和VC)是地下水系统中常见的两类污染物。 Fe(III)还原条件在许多沉积环境中占主导地位。但是,Fe(III)还原对MTBE / TBA和氯化乙烯的生物转化的影响尚不清楚。这项研究调查了在沉积物微观世界和富集培养中在减少Fe(III)的条件下这些污染物的生物降解和相关的微生物生态学。了解厌氧MTBE生物降解的主要限制是缺乏具有一致活性的液体培养物。这项研究从受污染的含水层材料中富集了三种截然不同的MTBE降解厌氧培养物,它们分别使用了2,6-二磺酸蒽醌,硫酸盐和富马酸盐作为末端电子受体。基于16S rRNA基因的系统发育分析表明新型微生物参与厌氧MTBE生物降解。这些培养物是第一种稳定,无沉淀的厌氧MTBE降解培养物,为厌氧MTBE生物降解的机理研究提供了模型系统。 [U-14C] -TBA大量矿化发生在还原Fe(III)的条件下。 TBA的生物降解活性与一个显性克隆的丰度相关,而该克隆与属于Alteproteobacteria的生物紧密相关。结果为还原Fe(III)促进厌氧性TBA矿化反应提供了原始证据,并为可能催化厌氧性TBA矿化反应的生物提供了初步的认识。还原性脱氯表明,Fe(III)的还原不会抑制完全脱氯,这与TCE脱氯将在任何有生物利用度的Fe(III)受到抑制的普遍观点相反。 Fe(III)形态对子产物分布和脱氯动力学有影响。定量PCR分析表明,脱卤Feco还原沉积物/培养物中同时富集了Dehalococcoides和Geobacteraceae生物;在没有Fe(III)的培养物中,Dehaloccocoides的丰度与没有Fe(III)的培养物中的丰度没有显着差异,这意味着Fe(III)的还原剂不会竞争并抑制Dehaloccocoides的生长。同样,Fe(III)的还原可能会刺激洛维氏乳杆菌样生物的生长,并有助于将TCE脱氯为顺式DCE。浓缩培养研究表明,当乙酸盐被修改为唯一的电子供体时,Fe(III)的还原将氢浓度保持在适当的稳态下,处于还原脱氯的理想范围内。过量添加10倍的电子供体并不能促进氯化乙烯的脱氯,但会导致甲烷的大量生产和产甲烷菌的富集。结果表明,添加过量的电子供体不仅会造成底物的浪费和生物修复中不必要的成本,而且还会产生不利的影响,例如提高甲烷的释放。

著录项

  • 作者

    Wei Na;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号