首页> 外文OA文献 >Refrigerant-Oil Mixtures and Local Composition Modeling
【2h】

Refrigerant-Oil Mixtures and Local Composition Modeling

机译:制冷剂 - 油混合物和局部组合物模型

摘要

The solubility and miscibility refrigerant-oil mixtures are important in understandingthe performance of refrigeration and air-conditioning systems. The objective of this studywas to provide useful information on the thennophysical properties of new refrigerant-oilmixtures and to evaluate candidate mixture models.In this report, the effect of a polyol ester lubricant on equilibrium pressure, liquiddensity, and viscosity is presented for R-22, R-125, R-134a, and AZ20 (50% R-125, 50%R-32) at varying temperatures and concentrations. Deviations from ideal mixture behaviorare interpreted using activity coefficients and may be manifested in three ways: positive,negative, or mixed deviations from Raoult's law. The departure from Raoult's law isrelated to molecular size differences and intennolecular forces in the mixture. Six differentmodels are used to correlate the experimental data: Wilson's relation, the Heil equation, theNon-Random Two Liquid (NRTL) model, the Universal Quasi-Chemical (UNIQUAC)theory, and two different extensions of Wilson's relation. Interaction parameters for all sixmodels are developed from the experimental data (and data from a previous ACRC researchproject). A comparison of the pressure predictions (activity coefficients) for each modelover a wide range of mixture compositions and temperatures shows that the Heil equationhas the best overall penonnance. The Heil equation correlates the saturation behavior ofthese mixtures with an average error less than 6%. The report is organized as follows:Chapters 1 & 2: Background material and research objectives.Chapter 3: A detailed description of the apparatus and test procedure. Acomparison of measurements from this apparatus to ASHRAE data.Chapter 4: Experimental data: mixture pressure as a function of liquid massfraction and temperature; liquid density as a function of liquid massfraction and temperature; viscosity as a function of temperature and liquidmass fraction. Oil density data and limited miscibility results (see alsoAppendix D).Chapter 5: Data analysis background (see also Appendix A).Chapter 6: Mixture modeling background (see also Appendices B, C, &E).Chapter 7: Interaction parameters for all mixtures and models are provided,and a detailed comparison of model performance is given.Chapter 8: A very brief summary of conclusions and recommendations.
机译:制冷剂-油混合物的溶解性和可混溶性对于理解制冷和空调系统的性能非常重要。这项研究的目的是提供有关新型制冷剂-油混合物的物理特性的有用信息,并评估候选混合物模型。在本报告中,提出了多元醇酯润滑剂对R-22的平衡压力,液体密度和粘度的影响。 ,R-125,R-134a和AZ20(50%R-125、50%R-32)在不同的温度和浓度下。与理想混合行为的偏差可以通过活度系数来解释,并且可以三种方式表现出来:与拉乌尔定律的正偏差,负偏差或混合偏差。与拉乌尔定律的偏离与混合物中的分子大小差异和肌腱力有关。使用六个不同的模型来关联实验数据:威尔逊关系,Heil方程,非随机两液体(NRTL)模型,通用拟化学(UNIQUAC)理论以及威尔逊关系的两个不同扩展。所有六个模型的交互参数都是根据实验数据(以及先前ACRC研究项目的数据)开发的。在各种混合物组成和温度范围内,对每个模型的压力预测值(活度系数)进行比较,表明Heil方程具有最佳的总体倾斜度。 Heil方程使这些混合物的饱和行为相关,平均误差小于6%。该报告的组织结构如下:第1章和第2章:背景材料和研究目标。第3章:仪器和测试程序的详细说明。第4章:实验数据:混合物压力与液体质量分数和温度的关系;液体密度与液体质量分数和温度的关系;粘度随温度和液体质量分数的变化而变化。油密度数据和有限的混溶性结果(另请参见附录D)第5章:数据分析背景(另请参见附录A)第6章:混合物建模的背景(另请参见附录B,C和E)第7章:所有产品的相互作用参数提供了混合物和模型,并给出了模型性能的详细比较。第8章:结论和建议的简短摘要。

著录项

  • 作者

    Martz W.L.; Jacobi A.M.;

  • 作者单位
  • 年度 1994
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号