首页> 外文OA文献 >The paradox of the plankton: Investigating the effect of inter-species competition of phytoplankton and its sensitivity to nutrient supply and external forcing
【2h】

The paradox of the plankton: Investigating the effect of inter-species competition of phytoplankton and its sensitivity to nutrient supply and external forcing

机译:浮游生物的悖论:调查浮游植物种间竞争的影响及其对养分供应和外部强迫的敏感性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Hutchinson (1961) first posed the paradox of the plankton: Why do so many phytoplankton species coexist while competing for a limited number of resources? High biodiversity has been explained in terms of the phytoplankton system not reaching an equilibrium state. Spatial and temporal variability can be achieved through externally imposed physical variability or internally-induced behaviour including periodic oscillations or irregular, chaotic behaviour. The research presented in this thesis investigates whether the non-equilibrium, chaotic response of the phytoplankton community is a likely outcome within the aquatic ecosystems. The thesis addresses the extent that chaotic behaviour remains a robust response with externally-imposed environmental variability. The sparsity of long-term time-series data and infrequent sampling inhibits the ability to verify whether marine ecosystems exhibit complex behaviour. The analysis of the time-series records of phytoplankton taxa in the English Channel suggests that chaos might occur within diatom and dinoflagellates abundance time series. However, simulations using a chemostat model for phytoplankton and nutrients suggests that time series sampled every 1-2 days for more than 5 years are required to confidently distinguish deterministic chaos from noise. The model simulations suggest that the community response depends on the phytoplankton requirement for nutrients and attributed physiological traits allowing each species to be a stronger competitor for a different resource. A wider inter-species specialization increases the likelihood of oscillatory and chaotic responses, with competitive exclusion decreasing from 50% to 20% of the cases. Higher departures from the Redfield ratio in the elemental composition of species favour complex community behaviour and act to increase biodiversity. Whether chaotic response can be sustained is sensitive to the strength of the diffusive feedback between nutrient supply and ambient nutrient concentration that acts to sustain steady-state nutrient concentrations. Including seasonal and stochastic variability in the nutrient supply reveals that the frequency of chaotic dynamics increases by 20% and 45% respectively. In addition, seasonal forcing leads to temporal variability in the strength of the chaotic response, with chaos becoming more prevalent in the summer. In contrast to a well-mixed, homogeneous environment, physical dispersal can stir different phytoplankton communities together, which might act to inhibit chaos, but at the same time enhance phytoplankton diversity. Idealised model simulations are conducted to mimic the small and large scale transport processes by including 2 or 3 well-mixed boxes. Locally generated chaotic response is sustained if: 1) there is a low rate of exchange with a strong nutrient competitor that maintains the contrasts in the community structure; 2) a strong competitor is inhibited by a high mortality rate. In addition, if the local community is outcompeted, chaos can be exported through the advection of stronger competitors that exhibit chaotic fluctuations. This study highlights the importance of understanding the interactions between ambient nutrients and phytoplankton community. The variability in the nutrient supply and connectivity between ecosystems shape the community response to inter-species competition. Complex behaviour arising from inter-species competition is suggested to have a significant contribution in driving biodiversity. Future research on assessing the extent of chaos requires extending and analysing the available time-series data obtained from stable or isolated marine provinces.
机译:哈钦森(Hutchinson,1961)首先提出了浮游生物的悖论:为什么在争夺有限数量的资源的同时,会有如此众多的浮游植物物种共存?关于高生物多样性的解释是,浮游植物系统未达到平衡状态。空间和时间的可变性可以通过外部施加的物理可变性或内部诱发的行为来实现,包括周期性的振荡或不规则的混沌行为。本文提出的研究调查了浮游植物群落的非平衡,混沌反应是否可能是水生生态系统中的结果。论文探讨了混沌行为在具有外部施加的环境可变性的情况下仍保持鲁棒响应的程度。长期时间序列数据的稀疏性和不经常进行的采样限制了验证海洋生态系统是否表现出复杂行为的能力。对英吉利海峡中浮游植物类群的时间序列记录的分析表明,硅藻中可能会出现混乱,而鞭毛藻可能会出现丰富的时间序列。但是,对浮游植物和营养物使用化学恒化器模型进行的模拟表明,要在5年来每1-2天采样一次时间序列,才能自信地将确定性混乱与噪声区分开。模型模拟表明,群落反应取决于浮游植物对养分的需求和所赋予的生理特性,从而使每个物种都可以成为不同资源的更强竞争者。种间专长的扩大,增加了产生振荡和混乱反应的可能性,竞争排斥从50%下降到20%。物种元素组成中与雷德菲尔德比率的较大偏离有利于复杂的社区行为并起到增加生物多样性的作用。能否维持混沌响应取决于养分供应与环境养分浓度之间的扩散反馈的强度,该扩散反馈起到维持稳态养分浓度的作用。包括营养物供应的季节性和随机性变化,表明混沌动力学的频率分别增加了20%和45%。另外,季节性强迫导致混沌响应强度的时间变化,在夏天,混沌变得更加普遍。与充分混合的均匀环境相比,物理分散可以将不同的浮游植物群落搅在一起,这可能起到抑制混乱的作用,但同时又增加了浮游植物的多样性。通过包括2个或3个充分混合的盒子,进行了理想的模型模拟,以模仿小型和大型运输过程。在以下情况下,局部产生的混沌反应得以维持:1)与营养力强的竞争者的交换率低,从而维持了群落结构的差异; 2)高死亡率会抑制强大的竞争对手。此外,如果当地社区竞争激烈,则可以通过表现出混乱波动的强大竞争对手的对流来输出混乱。这项研究突出了理解周围营养与浮游植物群落之间相互作用的重要性。养分供应的变化和生态系统之间的连通性决定了社区对种间竞争的反应。物种间竞争引起的复杂行为被认为对推动生物多样性具有重要贡献。未来有关评估混乱程度的研究需要扩展和分析从稳定或孤立的海洋省获得的可用时间序列数据。

著录项

  • 作者

    Kenitz K;

  • 作者单位
  • 年度 2000
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号