首页> 外文OA文献 >Generation, ascent and eruption of magma on the Moon:new insights into source depths, magma supply, intrusions and effusive/explosive eruptions (Part 2: Predicted Emplacement Processes and Observations)
【2h】

Generation, ascent and eruption of magma on the Moon:new insights into source depths, magma supply, intrusions and effusive/explosive eruptions (Part 2: Predicted Emplacement Processes and Observations)

机译:月球上岩浆的产生,上升和爆发:对震源深度,岩浆供应,侵入和喷发/爆炸性喷发的新见解(第2部分:预测的进位过程和观测)

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We utilize a theoretical analysis of the generation, ascent, intrusion and eruption of basaltic magma on the Moon to develop new insights into magma source depths, supply processes, transport and emplacement mechanisms via dike intrusions, and effusive and explosive eruptions. We make predictions about the intrusion and eruption processes and compare these with the range of observed styles of mare volcanism, and related features and deposits. Density contrasts between the bulk mantle and regions with a greater abundance of heat sources will cause larger heated regions to rise as buoyant melt-rich diapirs that generate partial melts that can undergo collection into magma source regions; diapirs rise to the base of the anorthositic crustal density trap (when the crust is thicker than the elastic lithosphere) or, later in history, to the base of the lithospheric rheological trap (when the thickening lithosphere exceeds the thickness of the crust). Residual diapiric buoyancy, and continued production and arrival of diapiric material, enhances melt volume and overpressurizes the source regions, producing sufficient stress to cause brittle deformation of the elastic part of the overlying lithosphere; a magma-filled crack initiates and propagates toward the surface as a convex upward, blade-shaped dike. The volume of magma released in a single event is likely to lie in the range 102 km3 to 103 km3, corresponding to dikes with widths of 40-100 m and both vertical and horizontal extents of 60-100 km, favoring eruption on the lunar nearside. Shallower magma sources produce dikes that are continuous from the source region to the surface, but deeper sources will propagate dikes that detach from the source region and ascend as discrete penny-shaped structures. As the Moon cools with time, the lithosphere thickens, source regions become less abundant, and rheological traps become increasingly deep; the state of stress in the lithosphere becomes increasingly contractional, inhibiting dike emplacement and surface eruptions. In contrast to small dike volumes and low propagation velocities in terrestrial environments, lunar dike propagation velocities are typically sufficiently high that shallow sill formation is not favored; local low-density breccia zones beneath impact crater floors, however, may cause lateral magma migration to form laccoliths (e.g., Vitello Crater) and sills (e.g., Humboldt Crater) in floor-fractured craters. Dikes emplaced into the shallow crust may stall and produce crater chains due to active and passive gas venting (e.g., Mendeleev Crater Chain) or, if sufficiently shallow, may create a near-surface stress field that forms linear and arcuate graben, often with pyroclastic and small-scale effusive eruptions (e.g., Rima Parry V). Effusive eruptions are modulated by effusion rates, eruption durations, cooling and supply limitations to flow length, and pre-existing topography. Relatively low effusion rate, cooling-limited flows lead to small shield volcanoes (e.g., Tobias Mayer, Milicius); higher effusion rate, cooling-limited flows lead to compound flow fields (e.g., most mare basins) and even higher effusion rate, long-duration flows lead to thermal erosion of the vent, effusion rate enhancement, and thermal erosion of the substrate to produce sinuous rilles (e.g., Rimae Prinz). Extremely high effusion rate flows on slopes lead to volume-limited flow with lengths of many hundreds of kilometers (e.g., the young Imbrium basin flows). Explosive, pyroclastic eruptions are common on the Moon. The low pressure environment in propagating dike crack-tips can cause gas formation at great depths and throughout dike ascent; at shallow crustal depths both the smelting reaction and the recently documented abundant magmatic volatiles in mare basalt magmas contribute to significant shallow degassing and pyroclastic activity associated with the dike as it erupts at the surface. Dikes penetrating to the surface produce a wide range of explosive eruption types whose manifestations are modulated by lunar environmental conditions: 1) terrestrial strombolian-style eruptions map to cinder/spatter cone-like constructs (e.g., Isis and Osiris); 2) hawaiian-style eruptions map to broad flat pyroclastic blankets (e.g., Taurus-Littrow Apollo 17 dark mantle deposits); 3) gas-rich ultraplinian-like venting can cause Moon-wide dispersal of gas and foam droplets (e.g., many isolated glass beads in lunar soils); 4) vulcanian-like eruptions caused by solidification of magma in the dike tip, buildup of gas pressure and explosive disruption, can form dark-halo craters with mixed country rock (e.g., Alphonsus Crater floor); 5) ionian-like eruptions can be caused by artificial gas buildup in wide dikes, energetic explosive eruption and formation of a dark pyroclastic ring (e.g., Orientale dark ring); 6) multiple eruptions from many gas-rich fissures can form regional dark mantle deposits (e.g., Rima Bode, Sinus Aestuum); and 7) long duration, relatively high effusion rate eruptions accompanied by continuing pyroclastic activity cause a central thermally eroded lava pond and channel, a broader pyroclastic ‘spatter’ edifice, an even broader pyroclastic glass deposit and, if the eruption lasts sufficiently long, an associated inner thermally eroded vent and sinuous rille channel (e.g., Cobra Head and Aristarchus Plateau dark mantle). The asymmetric nearside-farside distribution of mare basalt deposits is most plausibly explained by crustal thickness differences; intrusion is favored on the thicker farside crust and extrusion is favored on the thinner nearside crust. Second-order effects include regional and global thermal structure (areal variations in lithospheric thickness as a function of time) and broad geochemical anomalies (the Procellarum-KREEP Terrain). Differences in mare basalt titanium content as a function of space and time are testimony to a laterally and vertically heterogeneous mantle source region. The rapidly decreasing integrated flux of mare basalts is a result of the thermal evolution of the Moon; continued cooling decreased diapiric rise and mantle melting, thickened the lithosphere, and caused the global state of stress to be increasingly contractional, all factors progressively inhibiting the generation, ascent and eruption of basaltic magma. Late-stage volcanic eruptions are typically widely separated in time and characterized by high-volume, high-effusion rate eruptions producing extensive volume-limited flows, a predictable characteristic of deep source regions below a thick lithosphere late in lunar history. This improved paradigm for the generation, ascent, intrusion and eruption of basaltic magma provides the basis for the broader interpretation of the lunar volcanic record in terms of variations in eruption conditions in space and time, and their relation to mantle heterogeneity and a more detailed understanding of lunar thermal evolution.
机译:我们利用对月球上玄武岩浆的产生,上升,侵入和喷发的理论分析,对岩浆源的深度,供应过程,通过堤防侵入的输运和进位机制以及爆发性和爆炸性爆发提供了新的见解。我们对入侵和喷发过程做出预测,并将其与观测到的母马火山样式范围,相关特征和沉积物进行比较。块状地幔与热源丰富的区域之间的密度差异将导致较大的受热区域上升,因为浮力丰富的熔液底壁会产生部分熔体,这些熔体可以收集到岩浆源区中。斜率上升到正畸壳密度陷阱的底部(当地壳比弹性岩石圈更厚时),或者在历史的后期,上升到岩石圈流变陷阱的底部(当增厚的岩石层超过地壳厚度时)。残留的二apiapi浮力,以及二apiapi物质的持续生产和到达,增加了熔体的体积并给源区带来了超压,产生了足够的应力,导致上覆岩石圈弹性部分的脆性变形;充满岩浆的裂缝开始并向表面传播,就像一个向上凸起的叶片状堤坝。一次事件释放的岩浆量可能在102 km3至103 km3范围内,对应于宽度为40-100 m,垂直和水平范围均为60-100 km的堤防,有利于月球近侧的喷发。较浅的岩浆源产生的堤防从源区到地表是连续的,但是较深的岩浆源将传播从源区分离并以离散的便士形结构上升的堤。随着月亮随着时间的推移而变凉,岩石圈变厚,源区变得越来越稀少,流变陷阱变得越来越深。岩石圈中的应力状态变得越来越收缩,从而抑制了堤防的侵入和地表喷发。与陆地环境中较小的堤防体积和较低的传播速度相比,月球堤防传播速度通常足够高,以至于不宜形成浅基石。但是,撞击坑底部下方的局部低密度角砾岩带可能引起横向岩浆运移,从而在裂缝破裂的火山口中形成漆岩(例如Vitello火山口)和基石(例如Humboldt火山口)。放置在浅层地壳中的堤防可能由于主动和被动气体排放(例如,门捷列夫陨石坑链)而失速并产生弹坑链,或者如果足够浅,则可能会形成近表面应力场,从而形成线性和弓形的en陷,通常是火山碎屑和小规模的爆发性喷发(例如Rima Parry V)。流出性喷发受积液速率,喷发持续时间,冷却和流动长度的供应和限制以及先前存在的地形的调节。出水率相对较低,受冷却限制的流量导致了小的盾形火山(例如Tobias Mayer,Milicius);较高的积液率,受冷却限制的流动导致复合流场(例如,大多数母马盆地),甚至较高的积液率,长时间的流动导致排气孔的热蚀,积液率提高和要生产的基质的热蚀弯曲的小浪(例如Rimae Prinz)。斜坡上的积水速率极高,导致长度受限的流量达到数百公里的长度(例如年轻的Imbrium盆地流量)。爆炸性火山碎屑喷发在月球上很常见。传播的堤坝裂缝尖端的低压环境会在大深度和整个堤坝上升过程中引起气体形成。在浅层地壳深度,熔岩反应和最近记录的母马玄武岩岩浆中丰富的岩浆挥发物都对堤坝喷发时与堤坝有关的显着浅层脱气和火山碎屑活动做出了贡献。渗透到地表的堤坝会产生各种爆炸性喷发类型,其表现受月球环境条件的调节:1)陆地上的strombolian式喷发映射到煤渣/散落锥状构造(例如,Isis和Osiris); 2)夏威夷式火山喷发映射到宽阔的平坦火山碎屑层(例如Taurus-Littrow Apollo 17黑暗地幔沉积); 3)富含气体的超夹层似的排放可能会导致气体和泡沫滴在月球范围内扩散(例如,月球土壤中许多孤立的玻璃珠); 4)堤防尖端的岩浆凝固,气压升高和爆炸性破坏引起的类似火山的喷发,可与混合的乡村岩石形成暗晕环形山(例如Alphonsus火山口底板); 5)宽堤堤中的人造气体堆积,高能炸药喷发以及形成深色火山碎屑环(例如Orientale深色环)可能会导致类似爱奥尼亚火山的喷发; 6)来自许多富气裂缝的多次喷发可形成区域性暗幔沉积物(例如Rima Bode,Sinus Aestuum); 7)持续时间长,爆发速率高且伴有持续的火山碎屑活动,导致中央热侵蚀的熔岩池和河道,火山碎屑的“飞溅”建筑物更宽,火山碎屑的玻璃沉积物甚至更宽,如果喷发持续足够长的时间,相关的内部热蚀通风孔和蜿蜒的小溪通道(例如,眼镜蛇头和阿里斯塔丘斯高原暗幔)。地壳厚度差异最合理地解释了母马玄武岩沉积物的不对称的近-远侧分布。较厚的近侧地壳有利于侵入,而较薄的近侧地壳则有利于挤压。二阶效应包括区域和全球热力结构(岩石圈厚度随时间变化的面积变化)和广泛的地球化学异常(Procellarum-KREEP地形)。母玄武岩钛含量随时间和空间变化的差异证明了横向和垂直地幔源区的差异。母玄武岩的积分通量迅速下降是月球热演化的结果。持续的冷却减少了底栖岩浆的上升和地幔融化,使岩石圈增厚,并使整体应力状态越来越收缩,所有因素都逐渐抑制了玄武岩浆的产生,上升和喷发。晚期火山喷发通常在时间上广泛分开,其特征是大流量,高喷发率的喷发产生大量的有限体积的水流,这是月球历史晚期厚岩石圈以下深源区的可预测特征。玄武岩浆的产生,上升,侵入和喷发的这种改进范例为根据空间和时间喷发条件的变化及其与地幔非均质性的关系和更详细的理解提供了更广泛的解释月球火山记录的基础月球热演化的过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号