首页> 美国政府科技报告 >Modified Finite-Element Model for Application to Terrain-Induced Mesoscale Flows
【24h】

Modified Finite-Element Model for Application to Terrain-Induced Mesoscale Flows

机译:改进的有限元模型在地形诱导中尺度流动中的应用

获取原文

摘要

Terrain-induced mesoscale flows are localized atmospheric motions generated primarily by surface inhomogeneities such as differential heating and irregular terrain. Well-known examples of such flows are sea-and-land breeze circulations, mountain-valley flows, urban heat island circulations and mountain lee waves. A numerical model capable of capturing the details of these frequently complicated flow patterns must often contain a realistic and rather accurate representation of the relevant terrain. Over the last decade, mesoscale models have been developed in which various approaches were used to incorporate variable terrain. In this study, a somewhat unique approach, based on a modified finite element procedure, was used to solve the nonhydrostatic planetary boundary layer equations. The nonhydrostatic and finite element features of the model are particularly advantageous for modeling flows over complex topography. The numerical aspects of the model, the parameterizations currently used, and a few preliminary results are presented. (ERA citation 08:018598)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号