首页> 美国政府科技报告 >Summary of the Mineralogy-Petrology of Tuffs of Yucca Mountain and the Secondary-Phase Thermal Stability in Tuffs
【24h】

Summary of the Mineralogy-Petrology of Tuffs of Yucca Mountain and the Secondary-Phase Thermal Stability in Tuffs

机译:丝兰山凝灰岩的矿物学 - 岩石学及凝灰岩中的二次热稳定性综述

获取原文

摘要

Yucca Mountain is composed of a thick sequence of silicic tuffs that are quite variable in degree of welding, alteration, and zeolitization. Tuff units above the water table are commonly devitrified or still vitric, with the exception of the zeolitized Pah Canyon Member in USW-G2. The devitrified tuffs above the water table commonly contain alkali feldspar, quartz, tridymite, and cristobalite, with minor smectite. The vitric tuffs are partly to wholly altered to sodium-calcium-saturated smectite. Below the water table are generally densely welded nonzeolitized tuffs and less densely welded zeolite-containing tuffs. The specific mineral assemblage present in Yucca Mountain tuffs has important implications in choosing a repository. The secondary phases clinoptilolite, mordenite, and smectite are very important because of their large cation sorption capacities. However, whereas densely welded tuffs containing no zeolite or glass are resistant to heating and do not dehydrate significantly, zeolitized, vitric, and smectite-containing horizons are very sensitive to minor increases in temperature. Smectites are particularly sensitive to changes in water vapor pressure and temperature, and temperature increases can lead to water evolution and large volume reductions. Similarly, clinoptilolite and mordenite begin to dehydrate below 100 exp 0 C, resulting in volume decreases. The exact effect of temperature on vitric tuffs is unclear. Under hydrothermal conditions the smectites gradually transform to nonexpanding, low sorption capacity illites, and there is evidence that this reaction has occurred in the deeper portions of USW-G2. Clinoptilolite transforms under hydrothermal conditions to analcime plus quartz with a concomitant volume decrease and water evolution. Again, there is evidence of this reaction occurring in Yucca Mountain tuffs at 80 to 100 exp 0 C. (ERA citation 08:027771)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号