首页> 美国政府科技报告 >Wind-Tunnel Investigation of the Effects of Blade Tip Geometry on the Interaction of Torsional Loads and Performance for an Articulated Helicopter Rotor
【24h】

Wind-Tunnel Investigation of the Effects of Blade Tip Geometry on the Interaction of Torsional Loads and Performance for an Articulated Helicopter Rotor

机译:叶尖几何形状对铰接式直升机转子扭转载荷与性能影响的风洞研究

获取原文

摘要

The Langley transonic dynamics tunnel was used to determine the degree of correlation between rotor performance and the dynamic twist generated by changes in blade tip geometry using an articulated rotor with four different tip geometries at advance ratios of 0.20, 0.30 and 0.35. Based on the data obtained, it is concluded that: (1) there appears to be no strong correlation between blade torsion loads and rotor performance prediction; (2) for a given rotor task at each advance ratio investigated, both the azimuthal variation of torsional moment and the mean torsional moment at 81% radius are configuration dependent; (3) reducing the nose down twist on the advancing blade appears to be more important to forward flight performance than increasing the nose down twist on the retreating blade; (4) the rotor inflow model used was important in predicting the performance of the adaptive rotor; and (5) neither rigid blade solidity effects, inflow environment, nor blade torsion loads can be used alone to accurately predict active rotor performance.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号