首页> 美国政府科技报告 >Strain Measurement Using FBG on COPV in Stress Rupture Test
【24h】

Strain Measurement Using FBG on COPV in Stress Rupture Test

机译:应用FBG对COpV应力破裂试验进行应变测量

获取原文

摘要

White Sands Test Facility (WSTF) was requested to perform ambient temperature hydrostatic pressurization testing of a Space Transportation System (STS) 40-in. Kevlar Composite Overwrapped Pressure Vessel (COPV). The 40-in. vessel was of the same design and approximate age as the STS Main Propulsion System (MPS) and Orbiter Maneuvering System (OMS) vessels. The NASA Engineering Safety Center (NESC) assembled a team of experts and conducted an assessment that involved a review of national Kevlar COPY data. During the review, the STS COPVs were found to be beyond their original certification of ten years. The team observed that the likelihood of STS COPV Stress rupture, a catastrophic burst before leak failure mode, was greater than previously believed. Consequently, a detailed assessment of remaining stress rupture life became necessary. Prior to STS-114, a certification deviation was written for two flights of OV-103 (Discovery) and OV-104 (Atlantis) per rationale that was based on an extensive review of the Lawrence Livermore National Laboratories, COPV data, and revisions to the STS COPV stress levels. In order to obtain flight rationale to extend the certification deviation through the end of the Program, the Orbiter Project Office has directed an interagency COPV team to conduct further testing and analysis to investigate conservatism in the stress rupture model and evaluate material age degradation. Additional analysis of stress rupture life requires understanding the fiber stresses including stress that occurs due to thru-wall composite compression in COPV components. Data must be obtained at both zero gauge pressure (pre-stress) and at the component operating pressure so that this phenomenon can be properly evaluated. The zero gauge pressure stresses are predominantly a result of the autofrettage process used during vessel manufacture. Determining these pre-stresses and the constitutive behavior of the overwrap at pressure will provide necessary information to better predict the remaining life of the STS COPVs. The primary test objective is obtaining data to verify the hypothesis of a radially oriented thru-thickness stress-riser in the COPV composite whose magnitude is a function of the applied pressure and the load history. The anticipated load dependent response follows from the constitutive behavior of the composite overwrap so data to quantify its nonlinear and time dependent response will be sought. The objective of the Fiber Braggs Gratings (FBGs) were to advance the state-of-the-art by developing techniques using FBG sensors that are capable of assessing stress-rupture degradation in Kevlar COPVs in a health monitoring mode (1). Moreover, they sought to answer questions of how embedded sensors affect overall integrity of the structure. And lastly, they sought to provide an important link in the overall stress rupture study that will help close the loop on the COPV fabrication process. NDE inspection methods will be used from start to finish and FBG will be an integral link within the overall chain.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号