首页> 美国政府科技报告 >Diffusion Flame Extinction in Slow Convenctive Flow under Microgravity Environment
【24h】

Diffusion Flame Extinction in Slow Convenctive Flow under Microgravity Environment

机译:微重力环境下慢速通流中的扩散火焰消光

获取原文

摘要

A theoretical analysis is presented to study the extinction characteristics of a diffusion flame near the leading edge of a thin fuel plate in slow, forced convective flows in a microgravity environment. The mathematical model includes two-dimensional Navier-Stokes momentum, energy and species equations with one-step overall chemical reaction using second-order finite rate Arrhenius kinetics. Radiant heat loss on the fuel plate is applied in the model as it is the dominant mechanism for flame extinguishment in the small convective flow regime. A parametric study based on the variation of convective flow velocity, which varies the Damkohler number (Da), and the surface radiant heat loss parameter (S) simultaneously, is given. An extinction limit is found in the regime of slow convective flow when the rate of radiant heat loss from fuel surface outweighs the rate of heat generation due to combustion. The transition from existent envelope flame to extinguishment consists of gradual flame contraction in the opposed flow direction together with flame temperature reduction as the convective flow velocity decreases continuously until the extinction limit is reached. A case of flame structure subjected to surface radiant heat loss is also presented and discussed.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号