首页> 美国政府科技报告 >Direct numerical simulations of turbulent convection with a variable gravity and Keplerian rotation
【24h】

Direct numerical simulations of turbulent convection with a variable gravity and Keplerian rotation

机译:直接数值模拟湍流对流的变重和开普勒旋转

获取原文

摘要

Thermal convection was proposed as a possible mechanism for generation and maintenance of turbulence in the inner accretion disk regime of the primordial solar nebula. It is of fundamental interest to design experiments with the basic physical features of the solar nebula conditions cannot be produced in the laboratory, numerical simulations of hydrodynamic flows, which have been very successful in describing aerodynamic flows, can be suitable modified to provide experimental data for solar nebula modelling. The goals are to modify an extant, proven hydrodynamics code with the most important features of the solar nebula and other thin accretion disks: bouyancy terms to generate convection, internal heating representing the release of gravitational potential energy, a variable gravity linearly proportional the the distance from the vertical midplane due to centrifugal balance, rapid rotation with axis aligned with gravity, and Keplerian rotational shear; to determine the effect that these features have on the turbulent convection by introducing them individually and to determine the cumulative nature of the turbulent convection for accretion disk conditions; and to model the convection and the turbulence. In this manner, prior solar nebula models can be tested and their deficiencies rectified.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号