首页> 美国政府科技报告 >Aeroservoelastic Modeling and Applications Using Minimum-State Approximations of the Unsteady Aerodynamics
【24h】

Aeroservoelastic Modeling and Applications Using Minimum-State Approximations of the Unsteady Aerodynamics

机译:使用非定常空气动力学的最小状态近似的气动伺服弹性建模和应用

获取原文

摘要

Various control analysis, design, and simulation techniques for aeroelastic applications require the equations of motion to be cast in a linear time-invariant state-space form. Unsteady aerodynamics forces have to be approximated as rational functions of the Laplace variable in order to put them in this framework. For the minimum-state method, the number of denominator roots are in the rational approximation. Results are shown of applying various approximation enhancements (including optimization, frequency dependent weighting of the tabular data, and constraint selection) with the minimum-state formulation to the active flexible wing wind-tunnel model. The results demonstrate that good models can be developed which have an order of magnitude fewer augmenting aerodynamic equations more than traditional approaches. This reduction facilitates the design of lower order control systems, analysis of control system performance, and near real-time simulation of aeroservoelastic phenomena.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号