首页> 美国政府科技报告 >Lunar mare volcanism: Mixing of distinct, mantle source regions with KREEP-like component
【24h】

Lunar mare volcanism: Mixing of distinct, mantle source regions with KREEP-like component

机译:月球母马火山活动:将不同的地幔源区与KREEp类组分混合

获取原文

摘要

Mare basalts comprise less than 1% of the lunar crust, but they constitute our primary source of information on the moon's upper mantle. Compositional variations between mare basalt suites reflect variations in the mineralogical and geochemical composition of the lunar mantle which formed during early lunar differentiation (4.5-4.4 AE). Three broad suites of mare basalt are recognized: very low-Ti (VLT) basalts with TiO2 less than 1 wt%, low-Ti basalts with TiO2 = 2-4 wt%, and high-Ti basalts with TiO2 = 10-14 wt%. Important subgroups include the Apollo 12 ilmenite basalts (TiO2 = 5-6 wt%), aluminous low-Ti mare basalts (TiO2 = 2-4 wt%, Al2O3 = 10-14 wt%), and the newly discovered Very High potassium (VHK) aluminous low-Ti basalts, with K2O = 0.4-1.5 wt%. The mare basalt source region has geochemical characteristics complementary to the highlands crust and is generally thought to consist of mafic cumulates from the magma ocean which formed the felsic crust by feldspar flotation. The progressive enrichment of mare basalts in Fe/Mg, alkalis, and incompatible trace elements in the sequence VLT basalt yields low-Ti basalt yields high-Ti basalt is explained by the remelting of mafic cumulates formed at progressively shallower depths in the evolving magma ocean. This model is also consistent with the observed decrease in compatible element concentrations and the progressive increase in negative Eu anomalies.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号